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There has been a host of work on entity resolution (ER), to identify tuples that refer to the same entity. This
paper studies the inverse of ER, to identify tuples to which distinct real-world entities are matched by mistake,
and split such tuples into a set of tuples, one for each entity. We formulate the tuple splitting problem. We
propose a scheme to decide what tuples to split and what tuples to correct without splitting, fix errors/assign
attribute values to the split tuples, and impute missing values. The scheme introduces a class of rules, which
embed predicates for aligning entities across relations and knowledge graphs𝐺 , assessing correlation between
attributes, and extracting data from 𝐺 . It unifies logic deduction, correlation models, and data extraction by
chasing the data with the rules. We train machine learning models to assess attribute correlation and predict
missing values. We develop algorithms for the tuple splitting scheme. Using real-life data, we empirically
verify that the scheme is efficient and accurate, with F-measure 0.92 on average.
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1 INTRODUCTION
One of the most studied topics of data quality is entity resolution (ER). The ER problem is to identify
tuples that refer to the same entity. Also known as record linkage, data deduplication, merge/purge
and record matching, ER has been serving as a routine operation in many applications. There has
been a large body of work on ER, via machine learning (ML) [24, 40, 46, 58, 86, 88, 99, 105, 124, 131,
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tid name nationality born college film filmFestival festCity festCountry
ts Noemi 

Schneider Swiss 2013 null Sturm DOK.fest Munich null

tc Noemi 
Schneider Japanese 1986 ZHdK Sturm Landshut Short 

Film Festival Landshut Germany

information from the Swiss director erroneous valuesinformation from the German director

Fig. 1. Example tuples of mismatched entities

135], logic rules [25, 30, 48, 66, 123] or hybrids of the two [27, 55, 57].
A related problem concerns splitting tuples of mismatched entities. In practice, distinct entities

may be matched to the same tuple by mistake, despite efforts for preventing so (e.g., the study of
hard/soft conflicts [36, 122, 127], i.e., when an attribute takes multiple values, or two attributes bear
values that cannot co-occur; e.g.,when the status of a person is assigned both “single” and “married”).

Tuples of mismatched entities are observed in (a) user-contri-buted projects (e.g., IMDb [16] and
WikiPedia [22]), where users manipulate data collaboratively yet separately, (b) third-party data
purchased from for-profit companies [38] (e.g., Dun & Bradstreet [14]) or public data aggregators
(e.g., US Bureau of Labor Statistics [20]), where data has been processed by other parties, and (c)
data cleaning under data lineage where cleaning starts from checkpoints. For instance, it has been
reported in IMDb [129] that two different series (CG series [1] andWeb series [2]) with the same title
“Lego Friends” were merged into one, since “someone unfortunately made a mistake when creating
the entries” [129]. This mismatch was then manually split into two, one for a distinct series. Similar
issues were also reported in Wikidata [73], where Joseph de Cambis (Q3185827) was requested to
split into two, one for Joseph de Cambis (1658-1736) and one for Joseph de Cambis (1748-1825).

Intuitively, tuple splitting (TS) is the inverse of ER. ER identifies different tuples that denote the
same entity and merges them into a single tuple, while TS identifies a tuple of mismatched entities
and decomposes it into different tuples to represent distinct entities. As reported by Wikidata [8],
“such amalgamation can happen, e.g., when individuals have similar names and are active in related
fields”. When searching on IMDb community forums with keywords “merge” and “split”, it returns
6.7k and 886 results, respectively; after manual inspection, we find that 7 out of the top-10 results
for “split” shows actual needs for splitting a mismatch of persons/movies. As another example, it
was reported that the number of author splits is around one half of the number of merges in DBLP
in 2019 [107]. While TS is not as frequent as ER, a small percentage of mismatches could be quite
damaging; as stated in IMDb help center, “incorrect merges can take a long time to correct and
during that time the information will be listed badly on the Website” [68].

Unfortunately, while ER has been well studied and many applications support automatic merge
(e.g., IOS 16 [33]), the importance of TS is underestimated, and only limited TS functionalities
are provided, e.g., IMDb only supports a “Name Split” option to split credits by roles [17], and
Wikidata splits tuples manually by moving attributes one by one [8]. Add to the complication
that in some applications, we do not know what ER methods were used and what the original
data is, e.g., when ER is conducted by other parties in collaborative cleaning or the data is obtained
from a third party. If we know how ER merges two tuples, we may use conflicts as an evidence of
mismatch and then, revert the wrong merge and improve the ER itself. However, without knowing
what/how ER was actually used in the original data, “it is preferable to split the items” [8] and
a sophisticated method for splitting tuples is needed.

Example 1: Consider a real mismatch in IMDb [47], where two directors named “Noemi Schneider”
are merged by mistake. One is a Swiss, born in 1986 in Brugg and studied at ZHdK; the other is a
German, born in Munich and studied film there; both were nominated for an award in some film
festivals. The merged (simplified) tuple is 𝑡𝑠 in Fig. 1; its schema is person = (name, nationality, born,
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college, film, filmFestival, festCity, festCountry). The erroneous values and the correct belonging
of each value of 𝑡𝑠 are colored.

A close examination of 𝑡𝑠 reveals the following: (a) its film “conflicts” with its filmFestival, i.e., no
short film named “Sturm” was ever nominated at “DOK.fest” [13], and (b) “Sturm” is the work of a
Swiss director “Noemi Schneider” born in 1986 [19] and the director “Noemi Schneider” nominated
for “DOK.fest” is from Germany, born in 1982 [18]. That is, 𝑡𝑠 includes the information of two
distinct directors, e.g., the film of one and the award nomination of the other; this is called a
conflation/mismatch in [8].
One might want to correct 𝑡𝑠 by applying a data repairing method. It may correct errors in

attributes nationality and film for the German director, but drop the information of the Swiss one, or
the other way around. In practice, however, we want to preserve the information of both directors,
without loss of information. As evidenced by IMDb and Wikidata, tuple splitting is needed instead.

Ideally, we want to split 𝑡𝑠 into 𝑡𝑎 and 𝑡𝑏 for the Swiss and the German, respectively. This is,
however, nontrivial. Should we assign festCity = “Munich” to 𝑡𝑎 or 𝑡𝑏?What values should we assign
to these attributes in the other tuple, which may become null? How can we correct the error born =
“2013” in the same process? Canwe complete the tuples by filling in themissing values, (e.g., college)?

As another example, consider tuple 𝑡𝑐 in Fig. 1; there is an erroneous value in nationality of
𝑡𝑐 since no Japanese named “Noemi Schneider” was known in the film industry [16] and all other
values of 𝑡𝑐 match the information of the Swiss director [19]. In contrast to 𝑡𝑠 , we should correct
this error for the Swiss director, not to split 𝑡𝑐 into two. The question is how to decide when we
should split a tuple (e.g., 𝑡𝑠 ) and when to correct errors without splitting (e.g., 𝑡𝑐 )? 2

TS is as difficult as ER, if not harder. Several open issues need to be settled, which are not encoun-
tered when we conduct ER, as indicated in Example 1. How can we decide whether a tuple with
conflict values should be split or corrected? To split a tuple, how should we distribute its attribute
values to the right entities? How can we fill in missing values for the tuples resulted from splitting?

Contributions & organization. This paper makes a first attempt to systematically study the
problem of tuple splitting (TS).
(1) A scheme (Section 2). We formulate the tuple splitting problem. Taking reliable knowledge
graphs as an input, we propose a scheme, SET (Splitting EnTities), to split mismatched tuples and
correct tuples. SET decides what tuples to split, splits them into multiple ones, and imputes missing
values of split tuples, when tuples were mistakenly merged, the ER method for merging is unknown,
and the original data is no longer there [8]. It corrects errors with certainty (see below), no matter
whether the tuples are split or not.
(2) Extending REEs (Section 3). We propose an extension of Entity Enhancing Rules (REEs) of [51,
55, 57], refereed to as REE+s. REE+s support (a) ML models for determining correlated values as
predicates, (b) predicates for heterogeneous entity resolution (HER) [50] across relations and
knowledge graphs 𝐺 , and (c) predicates for imputing missing values by data extraction from 𝐺 . By
employing REE+s, SET splits mismatched tuples and corrects errors in a uniform process of logic
deduction, ML correlation and data extraction.
(3) Detecting mismatched entities (Section 4). SET decides what tuples to split and what tuples
to correct, by embedding an ML model M𝑐 that assesses the correlation of attribute values as a
predicate in REE+s. For a tuple to split, it decomposes it into multiple tuples, each denotes a distinct
entity, by referencing knowledge graph 𝐺 . Departing from existing models, M𝑐 is trained with
context-aware embeddings, based on both knowledge graphs and language models.
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(4) Splitting tuples (Section 5). In a uniform process, SET splits and corrects tuples. It extends the
chase [111] with a set Σ of REE+s and a conflict resolution strategy. For a tuple to split, it distributes
attribute values to right entities. For tuples with errors, it resolves the conflicts by enforcing REE+s
and accumulating/referencing a set Γ of validated facts (ground truth). We show that under certain
conditions on the ML models M in Σ, the chase is Church-Rosser [23], i.e., it converges at the
same result no matter in what order the rules are applied. The fixes are certain, i.e., they are logical
consequence of Σ and Γ, and are correct as long as Σ, Γ and M are correct/accurate.
(5) Deducing missing values (Section 6). SET fills in the missing values of the split tuples by support-
ing three strategies: logic deduction, data extraction from knowledge graphs, and ML prediction.
It trains an ML modelM𝑑 for suggesting values. It unifies the three strategies and completes the
split tuple by chasing with REE+s, prioritizing the first two strategies. Our method also works for
imputing incomplete information in general, a topic for which effective methods remain to be
developed, not limited to tuple splitting.
(6) Experimental study (Section 7). Using real-life data, we empirically verify the accuracy and
efficiency of the tuple splitting scheme. We find the following. On average, (a) its 𝐹1-score is 0.92
by combining logic deduction, ML correlation models and data extraction from knowledge graphs.
It is more accurate than all the baselines, by 31.8%, 8.3% and 39.5% for deciding what tuples to
split/correct, assigning attribute values to the split tuples, and imputing missing value, respectively.
It outperforms rule-based methods and ML-based methods by 35.5% and 30.3% respectively. (b) It
takes 1,481s on a dataset of 1,057,217 tuples, with a single machine.

Related work. We categorize the related work as follows.
Entity resolution. Prior ER methods can be classified as follows. (1) Rule-based: uniqueness-
constraints [66], matching dependencies (MDs) [30, 48, 80, 112, 115], pairwise-comparison [123],
similarity-comparison [109], rule learning by examples [113], blocking approaches [32, 64] and
datalog-like constraints [25]. (2) ML models: deep learning (e.g., [46, 58, 86, 88, 99, 135]), active learn-
ing (e.g., [24, 95, 105]), and unsupervised learning (e.g., [124, 131, 132]). (3) Hybrid: [27, 42] approach
ER by combining ML models with logical rules, and REEs [55, 57] embed ML models as predicates.

The need for distinguishing mismatched entities has long been recognized. [48, 57, 122] specify
entities that should not be matched by rules. [127] identifies hard conflicts on single attributes. [36]
studies soft conflicts on multiple attributes. [67] discovers mis-classified entities from a group of
categorized entities (entity categorization). [35, 72] study the risks of entity pairs being mismatched.

To our knowledge, no prior work has studied TS. (1) We target tuples of mismatched entities that
are present in our datasets, despite the effort of preventing so. (2) As the inverse of ER, TS requires
to detect, split, and complement mismatched entities, beyond the tasks of ER. (3) We propose the
first approach to splitting tuples, by unifying logic, ML and data extraction from knowledge bases.
Missing value imputation. The prior work is classified as follows.

(1) Rules: Functional dependencies (FDs), conditional functional dependencies (CFDs) [49], denial
constraints (DCs) [26], pattern functional dependencies (PFDs) [104] and REEs [55] could be
used for imputation. [110] iteratively applies FDs; [89] estimates the possible ranges of aggregate
queries; [104] uses PFDs with regex expressions; [62] adopts DCs for probabilistic repair; [116]
employs differential dependency in relations; [114] recovers missing attributes and links in graphs,
and [57] detects errors by extending hypercube.
(2) ML models: (a) deep learning, e.g., Restore [69] on relational data, DeepMVI [28] for time series,
AimNet [125] and Datawig [31] for structural mixed data; notably [65, 94, 101] adopt autoen-
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coder, EDIT [97] andMIWAE [93] consider missing values in training, and IPM [96] incorporates
imputation semantics into pre-trained language models; (b) generative adversarial net (GAN),
e.g., GAIN [128] and GINN [117] impute missing values when training data is incomplete, small or
noisy, and SSGAN [98] imputes multivariate time series; (c) transfer learning, e.g., Baran [91] learns
models from external sources to infer missing values in similar domains; (d) other approaches,
e.g., IIM [130], RRSI [100],ORBITS [77] and SOFIA [82], that adopt ML techniques to impute values.
Off-the-shelf imputation methods might introduce bias in datasets; this issue can be tackled by con-
sidering fairness [134], learning specific tasks [60] or a missingness graph [81] during imputation.
(3) Hybrid: [70, 102, 133] integrate rule learning from knowledge graphs (KGs) with embedding
models, to infer missing triples in KGs. An evaluation of imputation for time series is in [78].

This work differs from the prior work in the following. (1) Missing value imputation is just one
step of SET; the prior methods cannot be directly used to split tuples. (2) We propose a logical
framework that embed logic deduction, ML models and data extraction in the same chase process,
beyond statistical learning and inference [108]. (3) Besides missing values, SET also corrects
errors in the same process. (4) We train an ML model to deduce missing values based on attribute
correlations, beyond probabilistic inference.
Error correction. There has also been work on error correction. (1) Rule-based methods: Heuristic
fixes [26, 29, 39, 45, 61, 63, 108] and certain fixes [53–56], e.g., [63] uses cascade repairing to correct
data with minimal changes, and LLUNATIC [61] employs chase to clean data by integrating user
interaction and value confidence. In contrast, we aim to split mismatched tuples and and fix errors
with certainty, as opposed to minimal changes [63]; our extended chase supports a learning-based
conflict resolution strategy and has the Church-Rosser property, which is not guaranteed by [61].
(2) ML-based methods: Baran [91] adopts feature engineering to generate features and then passes
them to ML models for correction. SCARE [126] combines ML models and likelihood methods for
data cleaning. (3) Bayesian methods: PClean [85] and BayesWipe [41] adopt Bayesian generative
models to clean data injected with prior knowledge. (4) ML pipelines: CleanML [87] and Picket [90]
correct data errors in ML pipelines to improve ML models. [43] explains results of data cleaning
methods based on shapley values.

This work extends error correction with tuple splitting (TS); we study TS, a new problem. While
error correction aims at repairing individual tuples only, TS splits each tuple to multiple, one for
each entity, and corrects the split tuples for all entities. This said, SET deduces certain fixes and
imputes missing values in the same process, as logical consequences of REE+s and ground truth. It
employs a powerful set of rules: REEs of [55, 57] already subsume CFDs, DCs and MDs as special
cases, and support entity resolution and conflict resolution; moreover, REE+s extend REEs with
correlation models, HER and data extraction for TS and missing value imputation.

2 SPLITTING MISMATCHED TUPLES
In this section, we first formulate the tuple splitting problem (Section 2.1). We then present a tuple
splitting scheme (Section 2.2).

2.1 The Tuple Splitting Problem
We start with basic notations about relations and graphs.
Preliminaries. Consider a relation schema 𝑅 = (𝐴1 : 𝜏1, . . . , 𝐴𝑛 : 𝜏𝑛) with attributes 𝐴𝑖 of type 𝜏𝑖
(𝑖 ∈ [1, 𝑛]). A relation of 𝑅 is a set of tuples (𝐴1 = 𝑐1, . . . , 𝐴𝑛 = 𝑐𝑛), where 𝑐𝑖 is either a constant of
type 𝜏𝑖 , or null (when the value of the 𝐴𝑖 -attribute is missing). We assume w.l.o.g. that each tuple is
identified by tid, the tuple id.
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We represent a knowledge graph as 𝐺 = (𝑉 , 𝐸, 𝐿), where (a) 𝑉 is a finite set of vertices, (b)
𝐸 ⊆ 𝑉 ×𝑉 is a set of edges, and (c) 𝐿 is a function such that for each vertex 𝑣 ∈ 𝑉 (resp. edge 𝑒 ∈ 𝐸),
𝐿(𝑣) (resp. 𝐿(𝑒)) is a vertex (resp. edge) label. Here an edge label typifies predicates while vertex
labels may carry values.

A label path is a list 𝜌 = (𝑙1, . . . , 𝑙𝑛) of edge labels. A match of 𝜌 in 𝐺 is a list (𝑣0, 𝑣1, . . . , 𝑣𝑛) such
that (𝑣𝑖−1, 𝑙𝑖−1, 𝑣𝑖 ) is an edge in 𝐺 .

Entity resolution. Following Codd [37], consider tuples of schema 𝑅 that denote entities in a
(countably infinite) set E of entities. Denote by 𝐷𝑒 the set of tuples of 𝑅 such that each tuple 𝑡 ∈ 𝐷𝑒

represents a distinct entity in E. Assume a bijective mapping 𝑓 from 𝐷𝑒 to E such that for any
𝑡 ∈ 𝐷𝑒 , 𝑓 (𝑡) is the entity denoted by 𝑡 .

Informally, given a relation of schema 𝑅, an entity resolution method ER is to identify tuples such
that for any 𝑡1 and 𝑡2 in the relation, if 𝑡1 and 𝑡2 denote the same entity in E, then ER(𝑡1, 𝑡2) = true.
In practice, ER often identifies multiple tuples and merges them into the same tuple. Ideally,
ER(𝑡1, 𝑡2) = true iff 𝑓 (𝑡1) = 𝑓 (𝑡2).

We consider a relation 𝐷 of schema 𝑅 possibly after ER is applied to it. In the real world, 𝐷 may
have tuples of mismatched entities. Multiple tuples are merged into the same 𝑡 but they denote
distinct entities, i.e., ER(𝑡1, 𝑡2) = true but 𝑓 (𝑡1) ≠ 𝑓 (𝑡2). Here 𝑡1 and 𝑡2 are mistakenly matched to
the same 𝑡 , because they may bear erroneous values and/or the ER method is not very accurate.

The tuple splitting problem. Tuple splitting aims to develop a function TS such that (1) if
𝑓 (𝑡) ∉ E (i.e., 𝑡 does not refer to a unique entity in E), TS decomposes 𝑡 into a minimum set
TS(𝑡) = {𝑡1, . . . , 𝑡𝑘 } such that 𝑓 (𝑡𝑖 ) ∈ E and 𝑓 (𝑡𝑖 ) ≠ 𝑓 (𝑡 𝑗 ) for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ≤ 𝑘 , where the attribute
values of 𝑡𝑖 are either inherited from 𝑡 (possibly corrected if erroneous) or deduced/predicted via
correlated attribute values in 𝑡 ; and (2) if 𝑓 (𝑡) ∈ E but 𝑡 contains conflicting values (e.g., “Japanese”
of 𝑡𝑐 in Figure 1), TS corrects the errors in 𝑡 without splitting. We refer to TS(𝑡) as a split of 𝑡 .

Intuitively, TS splits tuples of mismatched entities, and corrects erroneous values in all the tuples
(split or not), in the same process. Here TS(𝑡) denotes the correction of tuple 𝑡 , consisting of split
and corrected tuples of 𝑡 . In particular, when |TS(𝑡) | = 1, TS(𝑡) simply corrects the conflicting
attribute values of 𝑡 , without splitting 𝑡 .

More formally, the tuple splitting problem is stated as follows.
◦ Input: A schema 𝑅, a relation 𝐷 of 𝑅, and a knowledge graph 𝐺 .
◦ Output: The split TS(𝑡) for all 𝑡 ∈ 𝐷 , possibly by referencing 𝐺 .
Recall tuple 𝑡𝑠 in Example 1. TS(𝑡𝑠 ) splits 𝑡𝑠 into 𝑡𝑎 and 𝑡𝑏 to represent the Swiss and German

director, respectively. Moreover, TS(𝑡𝑠 ) corrects the errors and fills in missing values in 𝑡𝑎 and 𝑡𝑏 .
For tuple 𝑡𝑐 , |TS(𝑡𝑐 ) | = 1, and we correct its errors without splitting.
This is nontrivial since 𝐷𝑒 and E are often not known. To compute TS(𝑡), we need to decide

whether to split 𝑡 . To split 𝑡 , we have to not only decide to which entity (𝑓 (𝑡𝑎) or 𝑓 (𝑡𝑏)) each
attribute value 𝑡 [𝐴] belongs, but also fill in missing values in 𝑡𝑎 and 𝑡𝑏 that are inevitable from
splitting. Add to the complication that attribute values are often erroneous; we have to detect and
correct the errors when computing TS(𝑡), no matter whether 𝑡 is to be split or not.

2.2 A Scheme for Splitting Tuples
We next present a scheme for splitting tuples of mismatched entities, referred to as SET (Splitting
EnTities), which subsumes error correction. As shown in Figure 2, SET takes as input a relation 𝐷

of schema 𝑅, and a reliable knowledge graph 𝐺 . It works in four steps, possibly interacting with
the users to confirm its decision.

(1) Identifying tuples to split (DecideTS). For each 𝑡 in 𝐷 , SET detects conflicts in a single tuple
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D DV DV

DecideTS Splitting Completing

context

DV

attribute value
correct value

conflict value
missing valueknowledge graph

User verification
(optional)

Fig. 2. The workflow of SET

(e.g., a film and filmFestival) and across tuples (e.g., different countries for the same city). It trains
a modelM𝑐 offline to measure the correlation of attributes. It employs REE+s (Section 3) to identify
tuples with conflicting attributes, by takingM𝑐 as predicates. It returns a set 𝐷𝑉 ⊆ 𝐷 of tuples with
conflicts. For each 𝑡 ∈ 𝐷𝑉 , SET creates a set TS(𝑡) of split tuples {𝑡1, ..., 𝑡𝑘 } based on conflicting
attributes, by consulting knowledge graphs or users, such that each 𝑡𝑖 denotes a distinct entity.
When |TS(𝑡) | = 1, 𝑡 is erroneous and is corrected without splitting.

(2) Splitting and correcting tuples (Splitting). For each 𝑡 in 𝐷𝑉 to split or correct, SET resolves
conflicts and distributes attribute values of 𝑡 to the right entities 𝑓 (𝑡𝑖 ) (𝑖 ∈ [1, 𝑘]) in a uniform
process, by chasing TS(𝑡) with REE+s, which checks attribute correlation via M𝑐 . It corrects errors
of all 𝑡 in 𝐷𝑉 , including but not limited to split tuples. The chase accumulates and references
ground truth. The corrections are accurate under certain conditions (see Section 5).

(3) Deducing missing values (Completing). SET then fills in missing values of tuples in TS(𝑡)
by applying REE+s. It trains an ML prediction modelM𝑑 offline to suggest missing values. Using
REE+s, SET uniformly deduces missing values via logic deduction, extracts data from knowledge
graphs, and infers missing values with M𝑑 .

(4) User verification. SET presents tuples in TS(𝑡) to users for confirmation. We accumulate (man-
ually or automatically) verified values in a set Γ of ground truth, which is referenced in steps (1)-(3).
SET differs from traditional data cleaning methods in that it identifies tuples of mismatched

entities and splits such tuples. As will be seen in Section 7, these improve the overall accuracy
in the presence of mismatched entities. SET subsumes error correction in that it fixes errors, no
matter whether the tuples are split or not.
Knowledge graphs. SET mines REE+s using methods [51] and accumulates ground truth itself (with
possible user verification). It takes knowledge graphs (KGs) as input, for heterogeneous ER (HER)
and ML pre-training. Several popular KGs are in place, e.g., Freebase [34], DBpedia [83], Yago [118]
and domain-specific DRKG [74] for drugs. We can select appropriate KGs based on the application
needs; the discovery/construction of KGs is beyond the scope of this paper.While (clean) KGs are not
a must (by using REEs of [55, 57]), SET performswell only in some cases without KGs (see Section 7).
Limitations. Since SET takes KGs as input and employs REE+s to split tuples, its effectiveness is
heavily affected by the quality of REE+/KGs used, which in turn depends on the underlying rule
mining and KG cleaning methods. Moreover, when the training data is insufficient/unrepresentative,
data imputation via correlation analysis may possibly exacerbate the problem of bias in the datasets.
We defer the study of these issues as topics for future work.

We will present Steps 1-3 in Sections 4-6, respectively.

3 EXTENDING ENTITY ENHANCING RULES
In this section, we introduce REE+s, an extension of entity enhancing rules (REEs) [51, 55, 57]
by supporting predicates for ML correlation models and data extraction from knowledge graphs.
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Below we first review the definition of REEs of [55]. We then present REE+s.
Review. REEs are originally defined over a database schema R = (𝑅1, . . . , 𝑅𝑚), where each 𝑅𝑖 is a
relation schema (Section 2.1).
Predicates. Predicates over R are defined as follows:

𝑝 ::= 𝑅(𝑡) | 𝑡 [𝐴] ⊗ 𝑐 | 𝑡 [𝐴] ⊗ 𝑠 [𝐵] | M(𝑡 [𝐴], 𝑠 [𝐵]),
where ⊗ is a comparison operator =,≠, <, ≤, >, ≥. Following tuple relational calculus [23], (1) 𝑅(𝑡)
is a relation atom over R, where 𝑅 ∈ R, and 𝑡 is called a tuple variable bounded by 𝑅(𝑡). (2) When 𝑡 is
bounded by 𝑅(𝑡) and𝐴 is an attribute of 𝑅, 𝑡 [𝐴] denotes the𝐴-attribute of 𝑡 . (3) In 𝑡 [𝐴] ⊗𝑐 , 𝑐 is a con-
stant in the domain of attribute𝐴 in𝑅. (4) In 𝑡 [𝐴]⊗𝑠 [𝐵], 𝑡 [𝐴] and 𝑠 [𝐵] are compatible, i.e., 𝑡 (resp. 𝑠) is
a tuple of some relation 𝑅 (resp. 𝑅′), and𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′ have the same type. Moreover, (5)M is an
ML classifier, and 𝑡 [𝐴] and 𝑠 [𝐵] are vectors of pairwise compatible attributes of 𝑡 and 𝑠 , respectively.
Intuitively, M is an ML model that returns a Boolean value. We consider M such as (1)

NLP models, e.g., Bert [44], for text classification; (2) ER models and link prediction models,
e.g., Bert [44] for semantic matching; and (3) models for error detection and correction, e.g.,
generative models [128]. We refer to M as an ML predicate.
REEs. An entity enhancing rule 𝜑 over schema R is defined as

𝑋 → 𝑒.

Here (1)𝑋 is a conjunction of predicates overR, and (2) 𝑒 is a predicate overR such that all tuple vari-
ables in𝜑 are bounded in𝑋 . We refer to𝑋 and 𝑒 as the precondition and consequence of𝜑 , respectively.
As shown in [55, 57], REEs subsume CFDs [49], DCs [26] and MDs [48] as special cases. In

addition, REEs support ML predicates. REEs have been being employed by Rock, an industrial scale
system, to catch duplicates (ER) and conflicts (CR, conflict resolution).
Semantics. Consider a database D of schema R. A valuation of tuple variables of an REE 𝜑 in D,
or simply a valuation of 𝜑 , is a mapping ℎ that maps each 𝑡 in relation atom 𝑅(𝑡) of 𝜑 to a tuple
in the relation of schema 𝑅 in D. We say that ℎ satisfies a predicate 𝑝 , written as ℎ |= 𝑝 , if (1) when
𝑝 is 𝑅(𝑡), 𝑡 [𝐴] ⊗ 𝑐 or 𝑡 [𝐴] ⊗ 𝑠 [𝐵], ℎ |= 𝑝 is interpreted as in tuple relational calculus [23]. (2) When
𝑝 is M(𝑡 [𝐴], 𝑠 [𝐵]), ℎ |= 𝑝 ifM predicts true on (ℎ(𝑡) [𝐴], ℎ(𝑠) [𝐵]).
Given a conjunction 𝑋 of predicates, we say ℎ |= 𝑋 if for all predicates 𝑝 in 𝑋 , ℎ |= 𝑝 . Given

an REE 𝜑 , we write ℎ |= 𝜑 such that if ℎ |= 𝑋 , then ℎ |= 𝑒 . A database D of R satisfies 𝜑 , denoted
by D |= 𝜑 , if for all valuations ℎ of 𝜑 in D, ℎ |= 𝜑 . We say that D satisfies a set Σ of REEs, denoted
by D |= Σ, if for all 𝜑 ∈ Σ, D |= 𝜑 .

Extending REEs. We next extend REEs by supporting the following predicates defined over a
database schema R and a knowledge graph 𝐺 , in addition to the predicates given above:

𝑝 ::= vertex(𝑥,𝐺) | HER(𝑡, 𝑥) | match(𝑡 .𝐴, 𝑥 .𝜌) | 𝑡 [𝐴] = val(𝑥 .𝜌) |
M𝑐 (𝑡 [𝐴], 𝑡 [𝐵])≥ 𝛿 | M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]=𝑐)≥ 𝛿 | 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵).

Here (a) 𝑥 in vertex(𝑥,𝐺) is a variable denoting a vertex in knowledge graph 𝐺 , referred to as
a variable bounded by vertex(𝑥,𝐺). (b) If 𝑥 is bounded by vertex(𝑥,𝐺) and 𝑡 is bounded by 𝑅(𝑡),
HER(𝑡, 𝑥) is a Boolean function that returns true if tuple 𝑡 and vertex 𝑥 refer to the same entity.
(c) If 𝜌 is a label path and if 𝑥 and 𝑡 are bounded as above, match(𝑡 .𝐴, 𝑥 .𝜌) checks whether the
path 𝜌 from vertex 𝑥 encodes the 𝐴-attribute of tuple 𝑡 . (d) If 𝑡 and 𝑥 are bounded as above and
match(𝑡 .𝐴, 𝑥 .𝜌) returns true, 𝑡 [𝐴] = val(𝑥 .𝜌) indicates that the 𝐴-attribute of 𝑡 takes the value
(label) of the last vertex 𝑣 on the match of 𝜌 from vertex 𝑥 . (e) As will be seen in Section 4, M𝑐

is an ML model that checks the strength of the correlation between (partial) tuple 𝑡 [𝐴] and the
𝐵-attribute value 𝑡 [𝐵], and 𝛿 is a strength threshold. (f) We will see in Section 6 that M𝑑 is an
ML model that given a partial tuple 𝑡 [𝐴], predicts a value for its 𝐵-attribute.
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We remark the following about these new predicates.
(1) SET supports the following methods for implementing HER(𝑡, 𝑥) (heterogeneous entity resolu-
tion): rule-based JedAI [103], parametric simulation [50], andMLmodels Silk [75] andMAGNN [59].
(2) One can implement match(𝑡 .𝐴, 𝑥 .𝜌) by using a Long-Short Term Memory (LSTM) network [71]
as shown in [50].
(3) Predicates vertex(𝑥,𝐺), HER(𝑡, 𝑥), match(𝑡 .𝐴, 𝑥 .𝜌) and 𝑡 [𝐴] = val(𝑥 .𝜌) aim to identify entities
across relation 𝐷 and knowledge graph 𝐺 , and extract data from 𝐺 to instantiate the missing
values of attribute 𝑡 [𝐴] in 𝐷 . We refer to them as extraction predicates.
(4) PredicatesM𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) ⊗ 𝛿 andM𝑐 (𝑡 [𝐴], 𝑡 [𝐵] = 𝑐) ⊗ 𝛿 assess correlation between values,
and 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵) suggests a value for (missing) attribute 𝐵. We refer to them as correlation
predicates. We will trainM𝑐 and M𝑑 in Sections 4 and 6, respectively.
(5) We define REE+s as a general extension of REEs such that existing REE applications can be ex-
tended to REE+s. This said, we use REE+s of special forms for different steps of tuple splitting; e.g., the
M𝑐 model is used for deciding tuples to split/correct (Section 4) and attribute assignment (Section 5);
and theM𝑑 model and extraction predicates aremostly used for imputingmissing values (Section 6).
REE+s. REE+s also have the form 𝜑 = 𝑋 → 𝑒 , except the following: all tuple variables and vertex
variables in 𝜑 are bounded in 𝑋 .

Example 2: Below are some REE+s over the schema of Example 1.
(1) 𝜑1 = person(t) → M𝑐 (𝑡 [film], 𝑡 [filmFestival]) ≥ 𝛿 , where M𝑐 checks the correlation between
attribute values, and 𝛿 is a predefined threshold. It says that in tuple 𝑡 , film and filmFestival should
be strongly correlated. We will see (in Section 4) that 𝑡𝑠 of Example 1 needs to be split/corrected
since M𝑐 (“Sturm”, “DOK.fest”) is small.
(2) 𝜑2 = person(𝑡) ∧ M𝑐 (𝑡 [name, filmFestival], 𝑡 [festCity] = 𝑐1) ≥ 𝛿 → 𝑡 [festCity] = 𝑐1. We
will see in Section 5 that 𝜑2 helps us distribute values to split tuples; it decides festCity = “Munich”
for the German director, since DOK.fest is an annual event in Munich.

(3) 𝜑3 = person(𝑡) ∧ 𝑡 [festCity] = “Munich”→ 𝑡 [festCountry] = “Germany”. As will be seen in Sec-
tion 6, 𝜑3 can be used for deducing the missing value of festCountry based on the value of festCity.

(4) 𝜑4 = person(𝑡) ∧null(𝑡 [college]) → 𝑡 [college] = M𝑑 (𝑡 [name, film], college), where null(𝑡 [𝐴])
is a syntactic abbreviation to check whether 𝑡 [𝐴] carries null value (i.e., 𝑡 [𝐴] “=” null), and ML
model M𝑑 predicts missing values. Intuitively, we can use 𝜑4 to find college = “ZHdk” for the
Swiss director, since “Sturm” is the degree film of the Swiss director during her bachelor study at
“ZhdK” [3] (as evidenced in [11, 15], ZhdK produces films for its students).

(5) 𝜑5 = person(t) ∧ vertex(𝑥,Wiki) ∧ HER(𝑡, 𝑥) ∧ match(𝑡 [born], 𝑥 .(yearOfBirth)) → 𝑡 [born]
= val(𝑥 .yearOfBirth). This REE+ says that if a person 𝑡 in 𝐷 matches a person vertex 𝑥 in Wiki
and if 𝑥 reaches vertex 𝑣 via an one-hop path 𝜌 = (yearOfBirth), then let 𝑡 [born] take 𝐿(𝑣) as its
value. As will be seen in Section 6, this is how we correct the erroneous value 𝑡𝑠 [born] = “2013”
and fetch the correct year of birth for both directors. Similarly, we can extract data from Wiki
and (optionally) impute other null values for them.

(6) 𝜑6 = person(𝑡) ∧ person(𝑠) ∧ 𝑡 [college] = 𝑠 [college] → 𝑡 [Country] = 𝑠 [Country], assuming
the existence of attribute Country (not shown). It states a regularity that the same college must
be in the same country, used for (a) detecting conflicts, as evidences of split/corrections, and (b)
correcting errors on Country. 2

Semantics. We extend the notion of valuation to be a mapping ℎ that instantiates each tuple variable
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𝑡 with a tuple in a database D, and each vertex variable 𝑥 with a vertex in a knowledge graph 𝐺 .
For the additional predicates 𝑝 , a valuation ℎ satisfies 𝑝 , denoted by ℎ |= 𝑝 , if the following is sat-

isfied. (a) If 𝑝 is HER(𝑡, 𝑥), then ℎ(𝑡) and ℎ(𝑥) refer to the same entity as determined by the Boolean
functionHER. (b) If 𝑝 ismatch(𝑡 .𝐴, 𝑥 .𝜌), then the labels on path 𝜌 match the attribute𝐴 of schema 𝑅,
and there exists a match of path 𝜌 from ℎ(𝑥), where 𝑡 is bounded by 𝑅(𝑡). (c) If 𝑝 is 𝑡 [𝐴] = val(𝑥 .𝜌),
then the match of 𝜌 from ℎ(𝑥) reaches a vertex 𝑣 in𝐺 , and the value of ℎ(𝑡) [𝐴] is equal to the value
(label) of 𝑣 . (d) If 𝑝 isM𝑐 (𝑡 [𝐴], 𝑡 [𝐵] = 𝑐)⊗𝛿 (resp.M𝑐 (𝑡 [𝐴], 𝑡 [𝐵])⊗𝛿), let𝑑 be the strength of the cor-
relation betweenℎ(𝑡) [𝐴] and 𝑐 (resp. 𝑡 [𝐵]) assessed byM𝑐 , then𝑑⊗𝛿 . (e) If 𝑝 is 𝑡 [𝐵] = M𝑑 (𝑡 [𝐴], 𝐵),
then the value of 𝑡 [𝐵] is equal to the 𝐵-attribute value suggested byM𝑑 to extend partial tuple 𝑡 [𝐴].
Discovery of REE+s. Algorithms are in place for discovering REEs of [55, 57], e.g., [51, 52]. We extend
them to discover REE+s as follows. We adopt levelwise search to mine REE+s 𝜑 : 𝑋 → 𝑒 , where 𝑋 is
empty initially. We iteratively pick a predicate 𝑝 and extend𝑋 to𝑋 ∧𝑝 until (a) there is no predicate
to be selected, or (b) 𝜑 : 𝑋 → 𝑒 is qualified to be returned (e.g., its confidence is above a threshold).

4 DECIDING TUPLES TO SPLIT/CORRECT
In this section, we first train an ML model M𝑐 for assessing the correlation between attribute
values. We then present our method for deciding what tuples to split and what tuples to correct by
embedding M𝑐 in REE+s, and consulting knowledge graphs/users.

4.1 Correlation Model M𝑐

The correlation model M𝑐 takes a partial tuple 𝑡 [𝐴] and an attribute value 𝑡 [𝐵] of 𝑡 (𝐵 ∉ 𝐴) as
input, and returns a confidence (in [0, 1]) indicating the strength of correlation between 𝑡 [𝐴] and
𝑡 [𝐵]. Intuitively, the higher the correlation strength is, the more likely 𝑡 [𝐴] and 𝑡 [𝐵] coexist in an
entity; a small strength means that 𝑡 might contain conflicts and thus, need to be split or corrected.
Challenges. One may want to adopt an existing model (e.g., LSTM) to learn a representation of
(𝑡 [𝐴], 𝑡 [𝐵]). But it does not work well.
(1) Prior knowledge. To determine the correlation between 𝑡 [𝐴] and 𝑡 [𝐵], one often has to reference
other sources for additional hints, e.g., if we know “DOK.fest is an annual event held in Munich”,
then 𝑡𝑠 [𝐴] =“Munich” and 𝑡𝑠 [𝐵] =“DOK.fest” are likely to be correlated.
(2) Limitation of embedding models. Pre-trained embedding models are mostly trained on unstruc-
tured text, rather than structured relational data. Moreover, they are not purposely trained to
assess the correlation between different attribute values. To utilize the embedding models, we
need a mechanism to bridge the gap.
(3) Training data. To learn correlation, a large amount of training instances is a must. It is
unrealistic to label them by hand. Worse still, it requires strong background, e.g., only film fans
may know that DOK.fest is held annually in Munich, and label them as correlated.

Model. To tackle these challenges, we propose a modelM𝑐 , whose novelty includes (a) a pretraining
procedure to incorporate prior knowledge into (𝑡 [𝐴], 𝑡 [𝐵]) based on knowledge graphs, (b) a well-
designed encoding scheme so that we can predict correlation by utilizing existing embedding
techniques, and (c) a self-supervised learningmechanism to trainM𝑐 without heavy human labeling.
As shown in Figure 3, M𝑐 takes 𝑡 [𝐴] and 𝑡 [𝐵] as input, and outputs a confidence indicating

their correlation. It has two major steps.
(1) Graph pretraining. We pretrain graph embeddings on a knowledge graph𝐺 , so that we can implic-
itly learn rich contextual information (e.g., DOK.fest held in Munich) from pretrained embedding.
(2) Context-aware embedding. We model 𝐼𝑡 = (𝑡 [𝐴], 𝑡 [𝐵]) as a sequence (by concatenating attribute
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values) and design encoders to obtain two representations of 𝐼𝑡 , via graph embeddings and
language models, respectively. After a softmax layer, we combine the classifications and generate
a confidence score by incorporating semantics.
Graph pretraining. Given a knowledge graph 𝐺 (𝑉 , 𝐸, 𝐿), we learn node/relation embeddings using
graph representation methods [84], such that given a score function𝑔(·) on node embeddings u, v, v′
of 𝑢, 𝑣, 𝑣 ′ ∈ 𝑉 and relation embedding r of edge label 𝑟 , where 𝑒 = (𝑢, 𝑣) with 𝐿(𝑒) = 𝑟 is in 𝐸 and
𝑒′ = (𝑢, 𝑣 ′) with 𝐿(𝑒′) = 𝑟 is not in 𝐸,𝑔(u, r, v) is maximized, while𝑔(u, r, v′) is minimized. This said,
we learn the embeddings such that if the embeddings of two vertices are close, they are correlated.
Graph pretraining is executed once as a preprocessing step andwill not increase the cost of inference.
Context-aware embedding. We treat 𝐼𝑡 = (𝑡 [𝐴], 𝑡 [𝐵]) as a sequence, by concatenating attribute
values 𝑡 [𝐴] and 𝑡 [𝐵]. To get the representation for 𝐼𝑡 , we adopt two embedding mechanisms.
(a) Graph embeddings.We tokenize 𝐼𝑡 and obtain the token embeddings based on a lookup table Dict
from graph pretraining on different knowledge graphs (e.g., [21]). Specifically, if a token 𝑇 is found
in Dict, we embed it as T = Dict[𝑇 ]; otherwise, we randomly initialize its embedding with the
normal (Gaussian) distribution. Then we transform 𝐼𝑡 into a matrix MG = [T1; . . . ;T |𝐼𝑡 | ] ∈ R |𝐼𝑡 |×𝑑1 ,
where 𝑑1 is the dimension of graph embeddings. We encode 𝐼𝑡 based onMG as follows, denoted
by h(MG) ∈ R𝑑1×1:

h(MG) = EncoderG (MG) = Poolmax (Attention(MG)),
where EncoderG is the encoder of graph embedding with the attention mechanism [121] Attention
and max pooling strategy Poolmax.
(b) Languagemodels.To create representations based on languagemodels, we adopt serialization [88].
Specifically, we serialize 𝐼𝑡 :

serial(𝐼𝑡 ) = ⟨COL⟩𝐴1⟨VAL⟩𝑡 [𝐴1] . . . ⟨COL⟩𝐴𝑘 ⟨VAL⟩𝑡 [𝐴𝑘 ]⟨COL⟩𝐵⟨VAL⟩𝑡 [𝐵],
where 𝐴 = {𝐴1, . . . , 𝐴𝑘 }, ⟨COL⟩ and ⟨VAL⟩ are special tokens [88] indicating the start of attribute
and value, respectively. The serialization of 𝐼𝑡 is fed to a language model LM (e.g., [44]). Given
a token 𝑇 in serial(𝐼𝑡 ), we use T = LM(𝑇 ) as its embedding. Then, we transform 𝐼𝑡 into a
matrixMLM = [T1; . . . ;T |serial(𝐼𝑡 ) | ] ∈ R |serial(𝐼𝑡 ) |×𝑑2 , where 𝑑2 is the dimension of language model
embedding. Similarly, we encode a representation h(MLM) ∈ R𝑑2×2 as follows:

h(MLM) = EncoderLM (MLM) = [Poolavg ( [T𝐴]);Poolavg (T𝐵)],
where MLM is written as [T𝐴, T𝐵] with the embedding matrices of 𝑡 [𝐴] and 𝑡 [𝐵], respectively,
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and Poolavg is the average pooling.

Confidence. Finally, we generate the confidence of the correlation between 𝑡 [𝐴] and 𝑡 [𝐵], by apply-
ing a fully-connected layer (FC) and softmax activation to compute 2-dimensional probabilities:

pG = Softmax(FCG (h(MG))), pLM = Softmax(FCLM (h(MLM))),
where pG [0] (resp. pG [1]) is the probability that 𝑡 [𝐴] and 𝑡 [𝐵] are (resp. not) correlated based on the
graph embeddings; similarly for pLM which is obtained based on the language model embeddings.

Then the final confidence value for 𝑡 [𝐴] and 𝑡 [𝐵] is:
M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) = 𝛼 · pG [0] + (1 − 𝛼) · pLM [0],

where𝛼 is a hyper-parameter to balance the twomechanisms. Intuitively, in this way, we not only uti-
lize contextual knowledge from knowledge graphs, but also augment the result with rich semantics.
Loss function and training strategy. Let T𝑐 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 be the set of training data, where
𝑥𝑖 = (𝑡𝑖 [𝐴], 𝑡𝑖 [𝐵]) is the 𝑖-th training data and 𝑦𝑖 ∈ {0, 1} is its label; 𝑦𝑖 = 1 if 𝑡𝑖 [𝐴] and 𝑡𝑖 [𝐵] are
correlated and 𝑦𝑖 = 0 otherwise. We adopt the cross entropy loss as follows:

LCE (T𝑐 ) = − 1
𝑁

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈T𝑐

(𝑦𝑖 · log(M𝑐 (𝑥𝑖 )) + (1 − 𝑦𝑖 ) · log(1 −M𝑐 (𝑥𝑖 ))) .

It is labor-intensive and needs strong background to label data. Nonetheless, for 𝑡 ∈ 𝐷 and𝐴 ∈ 𝑅,
𝑡 [𝑅−𝐴] is often correlated with 𝑡 [𝐴] in practice, where 𝑅−𝐴 is all attributes excluding 𝐴. Hence we
adopt self-supervised learning and generate T𝑐 as follows. (a) We randomly sample a tuple 𝑡 from 𝐷 .
(b) We randomly select one attribute 𝐵 and let the remaining be 𝐴. (c) With 𝑝 = 1

2 probability, we
use (𝑡 [𝐴], 𝑡 [𝐵], 1) as a positive example. With 1 − 𝑝 probability, we randomly select a value 𝑐 from
the domain of 𝐵 and use (𝑡 [𝐴], 𝑐, 0) as a negative example. In this way we get 𝑁 examples in T𝑐 .

4.2 Identifying Tuples to Split and Correct
We present our method for identifying tuples of mismatched entities to split and tuples with
conflicts to correct, by combining logic deduction, correlation analysis and heterogeneous ER (HER)
across relations and knowledge graphs. Intuitively, 𝑡 needs to be split if (1) 𝑡 has conflicting values
that violate data regularity, enforced by a set Σ𝑑 of REE+s on accumulated ground truth Γ; and (2)
those values belong to multiple entities, confirmed by users and/or knowledge graph 𝐺 . If only (1)
holds, we correct errors in 𝑡 without splitting.
For instance, we split 𝑡𝑠 in Example 1, since (a) no short film “Sturm” was ever nominated at

“DOK.fest” [13] (a conflict) and more importantly, (b) these two values come from the Swiss and
German director, respectively [18, 19]; however, for 𝑡𝑐 , we only correct its erroneous nationality,
since “Japanese” is loosely correlated to all other values, which matches the Swiss director [19].

To detect conflicting values, we use two types of REE+s: (a) REEs𝑋 → 𝑒 of [55, 57] with predicates
𝑅(𝑡), 𝑡 [𝐴] ⊗ 𝑐, 𝑡 [𝐴] ⊗ 𝑠 [𝐵] and M(𝑡 [𝐴], 𝑠 [𝐵]), and at most two tuple variables, to identify critical
conflicts; and (b) REE+s of the form 𝑅(𝑡) ∧M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) ≤ 𝛿 → false, where false is a syntactic
sugar expressed as, e.g., 𝑡 [𝐴] ≠ 𝑡 [𝐴]; intuitively, such REE+s catch a violation if 𝑡 [𝐴] and 𝑡 [𝐵] are
loosely correlated (checked by M𝑐 ). The two types of REE+s apply logic deduction and correlation
analysis to detect conflicts, respectively.

The method references accumulated ground truth Γ, which consists of (𝑡 [𝐴], 𝑑) pairs, denoting
that 𝑡 [𝐴] has been validated to be𝑑 by users or by referencing knowledge graphs (KGs). In particular,
numerical values are tacked by comparison predicates in REE+s, and M𝑐 treats them as text (a
common practice in NLP).

Violation. Below we first formalize the notion of violations.
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Given an REE+ 𝜑 : 𝑋 → 𝑒 in Σ𝑑 and a tuple 𝑡∗ in 𝐷 , a violation of 𝜑 pertaining to 𝑡∗ is a valuation
ℎ of 𝜑 that satisfies the following:
(1) The REE+ 𝜑 pertains to 𝑡∗, i.e., if 𝜑 is an REE defined in [55, 57] (reviewed in Section 3), then
one of the tuple variable in 𝑒 is instantiated by 𝑡∗, e.g., if 𝑒 is 𝑡 [𝐴] ⊗ 𝑐 , then ℎ(𝑡) = 𝑡∗; if 𝜑 is
𝑅(𝑡) ∧M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) ≤ 𝛿 → false, then ℎ(𝑡) = 𝑡∗.
(2) All predicates 𝑝 in 𝑋 are validated. (a) If 𝑝 is 𝑡 [𝐴] ⊗ 𝑐 , then ℎ(𝑡) [𝐴] is validated to be 𝑑 in Γ and
𝑑 ⊗ 𝑐 ; similarly for 𝑡 [𝐴] ⊗ 𝑠 [𝐵]. (b) If 𝑝 isM(𝑡 [𝐴], 𝑠 [𝐵]), then for each attribute𝐴 in𝐴 (resp. each 𝐵
in 𝐵), ℎ(𝑡) [𝐴] (resp. ℎ(𝑠) [𝐵]) is validated in Γ andM(ℎ(𝑡) [𝐴], ℎ(𝑠) [𝐵]) = true. (c) If 𝑝 isM𝑐 (𝑡 [𝐴],
𝑡 [𝐵]) ≤ 𝛿 , then for each attribute 𝐴 in 𝐴, ℎ(𝑡) [𝐴] is validated in Γ andM𝑐 (ℎ(𝑡) [𝐴], ℎ(𝑡) [𝐵]) ≤ 𝛿 .
(3) Consequence 𝑒 is violated. Take equality as an example. (a) If 𝑒 is 𝑡 [𝐴] = 𝑐 , thenℎ(𝑡) [𝐴] ≠ 𝑐 . (b) If
𝑒 is 𝑡 [𝐴] = 𝑠 [𝐵] and assumew.l.o.g. thatℎ(𝑡) = 𝑡∗, thenℎ(𝑠) [𝐵] is validated in Γ and 𝑡∗ [𝐴] ≠ ℎ(𝑠) [𝐵].
(c) If 𝑒 is false in 𝑅(𝑡) ∧M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) ≤ 𝛿 → false, thenM𝑐 (ℎ(𝑡) [𝐴], ℎ(𝑡) [𝐵]) ≤ 𝛿 . In cases (a)
and (b), 𝐴 is the conflicting attribute of ℎ; in (c), 𝐵 inM𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) is the conflicting attribute.
For a set Σ𝑑 of REE+s, we denote by Vio(Σ𝑑 , Γ, 𝑡∗) the set of all violations of the REE+s in Σ𝑑

pertaining to 𝑡∗, i.e., ℎ ∈ Vio(Σ𝑑 , Γ, 𝑡∗) if ℎ violates at least one REE+ in Σ𝑑 pertaining to 𝑡∗.
Note that SET is able to capture violations of CFDs [49], DCs [26] and MDs [48], since REE+s

subsume them as special cases, e.g., we can rewrite 𝜑3 in Example 2 as a DC: ∀𝑡 ∈ person :
¬(𝑡 [festCity] = “Munich”∧𝑡 [festCountry] ≠ “Germany”); it catchesDC violations (e.g., the festival
city is “Munich” but its country is not “Germany”).
Algorithm. Our method, DecideTS, takes a set 𝐷 of tuples, a set Σ𝑑 of REE+s, a set Γ of ground
truth and a reliable knowledge graph 𝐺 as input; it decides whether tuples in 𝐷 need to be split or
corrected. For each tuple 𝑡 ∈ 𝐷 , it first computes the violations Vio(Σ𝑑 , Γ, 𝑡) by using the detection
algorithm of [57]. If Vio(Σ𝑑 , Γ, 𝑡) is empty, DecideTS returns false. Otherwise, we consult users or
knowledge graph𝐺 to check whether 𝑓 (𝑡) ∈ E (i.e., 𝑡 refers to a unique entity in E). For instance, if
tuple 𝑡 maps to multiple entities in knowledge graph 𝐺 by HER [50], then we know that 𝑓 (𝑡) ∉ E.
◦ If 𝑓 (𝑡) ∈ E, 𝑡 is a tuple with conflicts to correct. DecideTS simply returns TS(𝑡) = {𝑡} (with only
non-conflicting values validated) and later corrects the conflicts via the chase (Section 5).

◦ If 𝑓 (𝑡) ∉ E, 𝑡 is a mismatch to split. We return an initial split TS(𝑡) of 𝑡 (see below). Denote by
𝐷𝑇 the set of all tuples to split.
We use 𝐷𝑉 to denote the set of tuples 𝑡 in 𝐷 for which Vio(Σ𝑑 , Γ, 𝑡) is nonempty, i.e., all the

tuples to be split or corrected.
Initial splitting. For 𝑡 in𝐷𝑇 , letVio(Σ𝑑 , Γ, 𝑡) = {ℎ1, . . . , ℎ𝑙 }, and𝐴ℎ be the conflicting attribute ofℎ.We
compute TS(𝑡) of 𝑡 as follows: (a) TS(𝑡) is initialized to {𝑡 ′}, where 𝑡 ′ [𝐴] = 𝑡 [𝐴] if 𝑡 [𝐴] is validated
and 𝑡 ′ [𝐴] = null otherwise; and (b) for eachℎ in Vio(Σ𝑑 , Γ, 𝑡), we create a new tuple 𝑡 ′ in TS(𝑡), such
that for each attribute 𝐴, 𝑡 ′ [𝐴] = 𝑡 [𝐴] if 𝐴 = 𝐴ℎ (we set 𝑡 ′ [𝐴] as validated) and 𝑡 ′ [𝐴] = null other-
wise. Moreover, the quasi-identifier of 𝑡 (i.e., attributes combined as a unique identifier [119]) is repli-
cated at each 𝑡 ′ in TS(𝑡), e.g.,“Noemi Schneider” is replicated at each tuple in TS(𝑡𝑠 ) (Example 3). Each
𝑡 ′ is confirmed a distinct entity by knowledge graphs (viaHER) or users. The values of 𝑡 ′ are either in-
herited from 𝑡 (Section 5) or deduced/predicted via correlated values (Section 6). Note thatDecideTS
can detect tuples merged from multiple entities, e.g., when |TS(𝑡) | > 2, it indicates that there are
multiple violations of REE+s pertaining to 𝑡 and we may need to split 𝑡 into more than two tuples.
Example 3: Continuing Example 1, assume that 𝐷𝑇 = {𝑡}, Σ𝑑 = {𝜑7}, where 𝜑7 is person(𝑡) ∧
M𝑐 (𝑡 [filmFestival], 𝑡 [film]) ≤ 0.8 → false and Γ = {(𝑡 [filmFestival], “DOK.fest”)}. Consider
a valuation ℎ7: 𝑡𝑠 ↦→ 𝑡 . If M𝑐 (“DOK.fest”, “Sturm”) = 0.1, one can verify that ℎ7 is a violation
of 𝜑7 pertaining to 𝑡𝑠 since 𝑡𝑠 [filmFestival] is validated in Γ and M𝑐 (𝑡𝑠 [filmFestival], 𝑡𝑠 [film])
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= 0.1 ≤ 0.8. Then Vio(Σ𝑑 , Γ, 𝑡𝑠 ) = {ℎ7} and 𝑡𝑠 is a tuple to be split or corrected; film is its conflicting
attribute. Note that if 𝑡𝑠 [film] is validated in Γ, filmFestival is the conflicting attribute. Suppose
that we reference IMDb and confirm 𝑓 (𝑡𝑠 ) ∉ E (e.g., 𝑓 (𝑡𝑠 ) fuzzily maps to both directors). Then 𝑡𝑠 is
a mismatch to be split. We get an initial split TS(𝑡𝑠 ) = {𝑡𝑎, 𝑡𝑏}, where 𝑡𝑎 = (“Noemi Schneider”, null,
null, null, “Sturm”, null, null, null) and 𝑡𝑏 = (“Noemi Schneider”, null, null, null, null, “DOK.fest”,
null, null), with non-null values validated in Γ. 2

Augmenting Γ. Initially, Γ might only contain a limited number of ground truth labeled by the user
(if any). As a by-product of DecideTS, we augment Γ with additional ground truth, as follows:
(1) Given a valuation ℎ of 𝜑 : 𝑋 → 𝑒 in Σ𝑑 where all predicates in 𝑋 are validated in Γ, we process
its consequence 𝑒 as follows: (a) If 𝑒 is 𝑡 [𝐴] = 𝑐 and ℎ(𝑡) [𝐴] is not yet validated in Γ, we add
(ℎ(𝑡) [𝐴], 𝑐) to Γ. (b) If 𝑒 is 𝑡 [𝐴] = 𝑠 [𝐵] and ℎ(𝑡) [𝐴] (resp. ℎ(𝑠) [𝐵]) is not yet validated (resp. is
validated to be 𝑑) in Γ, we add (ℎ(𝑡) [𝐴], 𝑑) to Γ.
(2) Even if Vio(Σ𝑑 , Γ, 𝑡) is empty, it does not necessarily mean that 𝑡 is validated (due to the lack
of REE+s or Γ). Thus if Vio(Σ𝑑 , Γ, 𝑡) is empty, we optionally invite a user to confirm whether 𝑡 is
a tuple with conflicts to split or correct, and add non-conflicting values to Γ.
Complexity. For each 𝑡 in 𝐷 and each 𝜑 in Σ𝑑 , it takes 𝑂 ( |𝐷 |) time to enumerate valuations
of 𝜑 since 𝜑 has at most two variables. Assume that the unit cost for validating a valuation
is 𝑐valid. Then computing Vio(Σ𝑑 , Γ, 𝑡) takes 𝑂 (𝑐valid |𝐷 |2 |Σ𝑑 |) time. For each tuple 𝑡 in 𝐷 (resp.
each tuple 𝑡 ′ in TS(𝑡) where 𝑡 ∈ 𝐷𝑇 ), if we reference knowledge graphs for deciding whether
𝑓 (𝑡) ∈ E (resp. 𝑓 (𝑡 ′) ∈ E), it takes 𝑂 (( |𝑉 | + |𝐸 |)2) time to perform HER [50]. The process takes
𝑂 (𝑐valid |𝐷 |2 |Σ𝑑 | + (|𝐷 | +∑

𝑡 ∈𝐷𝑇
TS(𝑡)) ( |𝑉 | + |𝐸 |)2) time in total.

5 SPLITTING AND CORRECTING TUPLES
In this section, we present algorithm Splitting, to correct errors and assign values of 𝑡 to tuples
in TS(𝑡), by chasing with REE+s. We first present the workflow (Section 5.1). We then review the
chase [111] (Section 5.2), based on which we develop Splitting (Section 5.3).

5.1 Overall Workflow
Given datasets 𝐷𝑉 and 𝐷 , a set Σ𝑎 of REE+s and a set Γ of ground truth as input, Splitting returns a
correction TS(𝑡) for each tuple 𝑡 ∈ 𝐷𝑉 , where each TS(𝑡) corrects erroneous values in 𝑡 and assigns
the values of 𝑡 [𝐴] to split tuples in TS(𝑡) (if 𝑡 is split) in a uniform process. The fixes generated
are certain [54, 56], i.e., they are guaranteed to be correct, as long as the REE+s and ground truth
are correct, when the ML models embedded in the REE+s of Σ𝑎 are accurate.
A uniform process. Enforcing a set Σ𝑎 of designated types of REE+s (see below), we extend the
chase [111] by referencing Γ, to split and correct TS(𝑡) in the same process. Here an REE+ in Σ𝑎
can only be applied if its precondition is validated (see Section 4.2).
Assigning values. For a tuple 𝑡 to split (i.e., 𝑡 ∈ 𝐷𝑇 ), we assign values of 𝑡 to the right entities in
TS(𝑡), by embeddingM𝑐 in REE+s.

We use two types of REE+s for deciding whether the 𝐵-attribute value of 𝑡 ′ ∈ TS(𝑡) should be in-
herited from 𝑡 : (a) REEs of [55, 57] with at most two tuple variables that have consequence 𝑒 : 𝑡 ′ [𝐵] =
𝑡 [𝐵]; and (b) REE+s of the form 𝑅(𝑡 ′) ∧ M𝑐 (𝑡 ′ [𝐴], 𝑡 ′ [𝐵] = 𝑡 [𝐵]) ≥ 𝛿 → 𝑡 ′ [𝐵] = 𝑡 [𝐵]; intuitively,
𝑡 ′ [𝐴] and the value 𝑡 [𝐵] are strongly correlated (checked byM𝑐 ), and thus, we assign 𝑡 [𝐵] to 𝑡 ′ [𝐵].
Correcting errors. For each tuple 𝑡 in 𝐷𝑉 , no matter whether 𝑡 is to split or not, we correct erroneous
values in all tuples 𝑡 ′ ∈ TS(𝑡) by including the entire class of REEs of [55, 57] (Section 3) in Σ𝑎 .
As shown in [57], the REEs subsume CFDs,MDs and DCs as special cases, and are able to catch
errors commonly found in practice.
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5.2 Chasing with REE+s and Correlation Model
We next present the chase, starting with fixes.
Fixes. We assign values and correct errors for tuples 𝑡 ′ in TS(𝑡) by deducing fixes. We maintain all
the fixes in a set𝑈 , which consists of (𝑡 ′ [𝐵], 𝑐) pairs, indicating that 𝑡 ′ [𝐵] = 𝑐 is deduced (here 𝑐 can
be 𝑡 [𝐵] or a confirmed constant). Fixes are logical consequences of (Σ𝑎, Γ), i.e., as long as Σ𝑎 and
Γ are correct and the ML models embedded in Σ𝑎 are accurate (e.g., the modelM𝑐 ), so are the fixes.

Validity. We say that 𝑈 is valid if no (𝑡 ′ [𝐵], 𝑐1) and (𝑡 ′ [𝐵], 𝑐2) are both in 𝑈 at the same time such
that 𝑐1 ≠ 𝑐2 for constants 𝑐1 and 𝑐2.

The chase. We deduce fixes by chasing TS(𝑡) with REE+s in Σ𝑎 and ground truth in Γ. Specifically,
a chase step of TS(𝑡) by Σ𝑎 at𝑈 is

𝑈 ⇒(𝜑,ℎ) 𝑈
′
,

where 𝜑 : 𝑋 → 𝑒 is an REE+ in Σ𝑎 and ℎ is a valuation of 𝜑 such that (a) all predicates in 𝑋 are
validated by𝑈 (i.e., the corresponding pair is in𝑈 ), and (b) the consequence 𝑒 : 𝑡 ′ [𝐵] = 𝑐 extends
𝑈 to 𝑈

′
, by adding the pair (𝑡 ′ [𝐵], 𝑐) to 𝑈 . Here ℎ involves at least one tuple in TS(𝑡) and may

reference (map variables to) other tuples in 𝐷 .
Chasing. A chasing sequence 𝜉 of TS(𝑡) by (Σ𝑎, Γ) is a sequence

𝑈 0, . . . ,𝑈 𝑛,

where 𝑈 0 is Γ and for each 𝑖 ∈ [1, 𝑛], there exist 𝜑 in Σ𝑎 and ℎ of 𝜑 such that 𝑈 𝑖−1 ⇒(𝜑,ℎ) 𝑈 𝑖 is a
valid chase step, i.e.,𝑈 𝑖 is valid.

The sequence 𝜉 terminates in one of the following two cases:
(a) No REE+s in Σ𝑎 can be further applied; in this case, we say that the chasing sequence 𝜉 is valid,

with𝑈 𝑛 as its result.
(b) There exist 𝜑 , ℎ and 𝑈 𝑛+1 such that 𝑈 𝑛 ⇒(𝜑,ℎ) 𝑈 𝑛+1 but𝑈 𝑛+1 is invalid. Such 𝜉 is invalid, with

its result ⊥ (undefined).

Example 4: Continuing with Example 3, assume that the initial split is TS(𝑡𝑠 ) = {𝑡𝑎, 𝑡𝑏} and
Σ𝑎 = {𝜑2, 𝜑3} from Example 2. Then we have the following chase steps of TS(𝑡𝑠 ) by (Σ𝑎, Γ):
(1) 𝑈 0 ⇒(𝜑2,ℎ2 ) 𝑈 1, where ℎ2 maps 𝑡 of 𝜑2 to 𝑡𝑏 ; 𝑈 1 extends 𝑈 0 with (𝑡𝑏 [festCity],“Munich”) i.e.,
we deduce “Munich” for 𝑡𝑏 .
(2) The chase then deduce 𝑡𝑏 [festCountry] = “Germany” by (𝜑3, ℎ3).

This chasing sequence is valid, since each chase step is valid and moreover, no more REE+s in Σ𝑎
can be further applied. 2

Church-Rosser. Following [111], we say that the chase is Church-Rosser if for any set Σ𝑎 of REE+s,
ground truth Γ, and sets 𝐷 and TS(𝑡) of tuples, all chasing sequences of TS(𝑡) by (Σ𝑎, Γ) terminate
and converge at the same result, denoted by Chase(TS(𝑡), Σ𝑎, Γ, 𝐷), no matter what REE+s in Σ𝑎
are used and how they are applied.

Corollary 1: Chasing with REE+s (havingM𝑐 ) is Church-Rosser. 2

Proof sketch: Chasing with REEs is proven to be Church-Rosser in [55]. One can verify that the
proof remains intact for REE+s that are extended with the correlation modelM𝑐 as predicates [12].2

5.3 Splitting and Correcting with the Chase
Although conceptually simple, we cannot split tuples by directly applying the chase, for the
following reasons. (a) The enumeration of valuations is costly; moreover, a valuation ℎ of 𝜑 : 𝑋 → 𝑒

may rely on the application of other valuations ℎ′ in previous chase steps, e.g., not-yet-validated
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Algorithm Splitting
Input: Dataset 𝐷 , split TS(𝑡) for 𝑡∈𝐷𝑉 , REE+s Σ𝑎 , and ground truth Γ.
Output: Updated TS(𝑡) for all 𝑡 ∈ 𝐷𝑉 with more values assigned/corrected.
1. Q := ∅; H := ∅; 𝑈 := Γ; S := ∅;
2. (Q,S) := GenerateValuation(𝐷,∪𝑡 ∈𝐷𝑉

TS(𝑡), Σ𝑎, Γ);
3. while Q ≠ ∅ do
4. ℎ := Q .pop() where ℎ is a valuation of 𝜑 : 𝑋 → 𝑡 ′ [𝐵] = 𝑐;
5. H := H ∪ {ℎ}; 𝑈 := 𝑈 ∪ {(𝑡 ′ [𝐵], 𝑐)};
6. if𝑈 is invalid, i.e., {(𝑡 ′ [𝐵], 𝑐1), (𝑡 ′ [𝐵], 𝑐2)} ⊆ 𝑈 , but 𝑐1 ≠ 𝑐2 then
7. (𝑡 ′ [𝐵], 𝑐) := ResolveConflict (𝑡 ′, 𝐵); Γ:=Γ ∪ {(𝑡 ′ [𝐵], 𝑐)};
8. Update𝑈 and affected valuations in Q andH ;
9. else Generate new valuations to Q based on (𝑡 ′ [𝐵], 𝑐);
10. Γ := 𝑈 ;
11. return ∪𝑡 ∈𝐷𝑉

TS(𝑡);

Fig. 4. Algorithm Splitting

𝑝 in 𝑋 may become validated after applying ℎ′. (b) The chase may terminate at an invalid result
(i.e., ⊥). If so, we need to resolve conflicts (𝑡 ′ [𝐵], 𝑐1) and (𝑡 ′ [𝐵], 𝑐2) for 𝑐1 ≠ 𝑐2.
Novelty. To overcome these, we develop Splitting, to assign values and correct errors in TS(𝑡)
via the chase, with the following novelty:
(a) We maintain structures to record temporary chasing results, so that valuations can be

enumerated/re-used efficiently and only affected/unchecked valuations need to be examined.
(b) We develop a learning-based conflict resolution strategy, complementing the logic deduction to

decide critical values.
(c) We assign values and correct errors in the same chase process.

Algorithm. We outline Splitting in Figure 4. For each TS(𝑡) of 𝑡∈𝐷𝑉 , it corrects errors and
distributes values of 𝑡 to tuples in TS(𝑡).
We maintain the following in Splitting (lines 1-2): (a) A setH (resp. Q) of valuations that have

been applied (resp. to be applied later); intuitively, they avoid the same valuation to be processed
repeatedly. (b) An index S such that for each 𝑡 ′ in TS(𝑡) and each attribute 𝐵, S[𝑡 ′ [𝐵]] stores the
valuation ℎ of 𝜑 : 𝑋 → 𝑒 , where 𝑡 ′ [𝐵] is in 𝑋 ; intuitively, when 𝑡 ′ [𝐵] is validated, we check only
valuations in S[𝑡 ′ [𝐵]] to see whether they can be applied in subsequent steps. (c) The set𝑈 of fixes
deduced, initialized to be Γ. Initially, H is empty; Q and S are initialized by generating valuations
ℎ pertaining to Γ (line 2), i.e., at least one predicate in the precondition of ℎ is validated by Γ, instead
of generating all valuations at once.
After initialization, Splitting deduces fixes by applying valuations ℎ of 𝜑 : 𝑋 → 𝑡 ′ [𝐵] = 𝑐 in Q

one by one (lines 3-8). Once being applied, ℎ is moved toH and𝑈 is extended with (𝑡 ′ [𝐵], 𝑐) (Line
5). Then we check the validity of𝑈 : (1) If𝑈 is valid (line 9), we generate new valuations (i.e., neither
inH nor in Q) based on the newly deduced fix (𝑡 ′ [𝐵], 𝑐) (by simply checking S[𝑡 ′ [𝐵]]) and add
them to Q if their preconditions are validated. (2) If 𝑈 is invalid (i.e., {(𝑡 ′ [𝐵], 𝑐1), (𝑡 ′ [𝐵], 𝑐2)} ⊆ 𝑈 ,
but 𝑐1 ≠ 𝑐2, lines 6-8), we call a procedure ResolveConflict (see below), to decide the true value 𝑐
of 𝑡 ′ [𝐵] and add (𝑡 ′ [𝐵], 𝑐) to Γ. Set𝑈 and affected valuations in Q and H are updated accordingly
based on the true value of 𝑡 ′ [𝐵], and the chase will be resumed. This process continues until Q
is empty. Finally, we update Γ with the fixes (line 10) and return TS(𝑡) (line 11).
Procedure ResolveConflict. Taking a tuple 𝑡 ′ ∈ TS(𝑡) and attribute 𝐵 as input, ResolveConflict
decides how to assign 𝑡 ′ [𝐵], via correlation analysis. Assume the set of candidate values (i.e., the
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active domain) for 𝑡 ′ [𝐵] is {𝑐𝑖 | ∃𝜑 ∈ Σ𝑎 : 𝑋 → 𝑡 ′ [𝐵] = 𝑐𝑖 }. We assign
𝑡 ′ [𝐵] = arg max

∀𝑐𝑖
M𝑐 (𝑡 ′ [𝐴], 𝑐𝑖 ),

where 𝑡 ′ [𝐴] is the validated partial tuple after the initial splitting. Intuitively, if 𝑐𝑖 is strongly
correlated with 𝑡 ′ [𝐴], we set 𝑡 ′ [𝐵] = 𝑐𝑖 .
Example 5: Consider the chase in Example 4 with Σ𝑎 = {𝜑2, 𝜑3}. As (𝑡𝑏 [festCity], “Munich”)
is not validated when it starts, Q (resp. S[𝑡𝑏 [festCity]]) is initialized as {ℎ2 : 𝑡𝑏 → 𝑡} (resp.
{ℎ3 : (𝑡𝑏 → 𝑡)}). We first process ℎ2 in Q; it validates 𝑡𝑏 [festCity] = “Munich”. Then we check
valuations in S[𝑡𝑏 [festCity]]. When all predicates in the precondition of ℎ3 are validated, ℎ3 is
added to Q. After deducing 𝑡𝑏 [festCountry] by applying (𝜑3, ℎ3), the chase terminates. 2

Analysis. The correctness of Splitting is partially warranted by Corollary 1. Under certain as-
sumptions on the ML models embedded in the REE+s of Σ𝑎 , it retains the Church-Rosser property
with conflict resolution. Due to the space limit, the proofs are reported in [12]. Splitting takes
𝑂 (𝑐valid |𝐷 | |𝑅 | |Σ𝑎 | (

∑
𝑡 ∈𝐷𝑉

|TS(𝑡) |)2) time, where 𝑐valid denotes the unit cost of validating a valuation
for an REE+. This is because the length of a chasing sequence is 𝑂 ( |𝑅 |∑𝑡 ∈𝐷𝑉

|TS(𝑡) |), and there
are |Σ𝑎 | REE+s in Σ𝑎 ; for each REE+ 𝜑 in Σ𝑎 , at most 𝑂 ( |𝐷 |∑𝑡 ∈𝐷𝑉

|TS(𝑡) |) valuations are checked.

6 COMPLETING SPLIT TUPLES
In this section we show how to complete tuples in TS(𝑡) by imputing missing values (Section 6.1).
In particular we train an ML model for suggesting values (Section 6.2). The method works for
imputing incomplete information in general, not limited to tuple splitting.

6.1 Imputing Missing Values
We fill in the missing values of TS(𝑡) by combining logic deduction, ML prediction and data extrac-
tion from knowledge graphs in a uniform logical framework by chasing TS(𝑡) with a set Σ𝑐 of REE+s.
REE+s. We use three types of REE+s, prioritizing the first two:
(1) (Logic) Bi-variable REEs in [55, 57] of the form 𝑋 → 𝑡 [𝐴] = 𝑐 , e.g., REEs similar to 𝜑3 to deduce

𝑡𝑎 [festCountry] = “Germany”.
(2) (Data extraction) REE+s 𝑅(𝑡 ′)∧vertex(𝑥,𝐺)∧HER(𝑡 ′, 𝑥)∧match(𝑡 ′ [𝐵], 𝑥 .𝜌) → 𝑡 ′ [𝐵] = val(𝑥 .𝜌).

Intuitively, if 𝑡 ′ matches a vertex 𝑥 in the knowledge graph 𝐺 and if 𝑥 reaches vertex 𝑣 via path
𝜌 , which encodes the 𝐵-attribute of 𝑡 ′, then 𝑡 ′ [𝐵] takes the value (label) of 𝑣 , e.g., 𝑡𝑏 [born] =
“1982” by 𝜑5 of Example 2.

(3) (ML prediction) REE+s 𝑅(𝑡 ′) ∧ null(𝑡 ′ [𝐵]) → 𝑡 ′ [𝐵] = M𝑑 (𝑡 ′ [𝐴], 𝐵), where 𝑡 ′ [𝐴] is a partial
tuple with all validated values and M𝑑 is a model, which suggests a value to fill in null 𝑡 ′ [𝐵]
(Section 6.2), e.g., 𝑡𝑎 [college] = “ZHdK” by 𝜑4 in Example 2.

The chase. We extend Splitting (Section 5.3) to complete tuples by chasing with the REE+s of
types (1) and (2), with the following modification: If the chasing is valid, for each tuple 𝑡 in 𝐷𝑉 ,
we check whether all null values of tuples in TS(𝑡) requested by the user are imputed. If so, TS(𝑡)
is returned. Otherwise, we randomly select a null 𝑡 ′ [𝐵] in TS(𝑡), set 𝑡 ′ [𝐵] = M𝑑 (𝑡 ′ [𝐴], 𝐵), where
𝐴 includes all validated attributes in 𝑡 ′, and chase TS(𝑡) iteratively. We useM𝑑 of Section 6.2 to
suggest attribute values only after REE+s for logic deduction and data extraction cannot determine
a right value for 𝑡 ′ [𝐵].
Example 6: Continuing the examples, we complete TS(𝑡𝑠 ) = {𝑡𝑎, 𝑡𝑏} with Σ𝑐 = {𝜑4, 𝜑5}. By
applying Σ𝑐 , we get 𝑡𝑎 = (“Noemi Schneider”, null, “1986”, “ZHdK”, “Sturm”, null, null, null). Assume
that we assign 𝑡𝑎 [festCity] = “Landshut” via the prediction modelM𝑑 . We then chase TS(𝑡𝑠 ) again
using REE+s just like 𝜑3 to deduce 𝑡𝑎 [festCountry] = “Germany”. This process continues until all
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null values required by the user are imputed and TS(𝑡𝑠 ) is returned. 2

Complexity. The cost of completing tuples is also dominated by the chase. A similar analysis
show that in total, it takes 𝑂 (( |𝑉 | + |𝐸 |)2 ∑

𝑡 ∈𝐷𝑉
|TS(𝑡) | + 𝑐valid |𝐷 | |𝑅 | |Σ𝑐 | (

∑
𝑡 ∈𝐷𝑉

|TS(𝑡) |)2) time,
since (a) it takes 𝑂 (( |𝑉 | + |𝐸 |)2) time to perform HER [50] for each tuple in TS(𝑡) of 𝑡 ∈ 𝐷𝑉 on
𝐺 (𝑉 , 𝐸, 𝐿), and (b) imputing null values does not increase the worst-case complexity.

6.2 Prediction Model M𝑑

We extendM𝑐 toM𝑑 for value imputation; it takes a partial tuple 𝑡 [𝐴] and an attribute 𝐵 as input,
and suggests a value for 𝑡 [𝐵].
Model M𝑑 . The model suggests missing values by referencing a knowledge graph 𝐺 , in two steps.
It first retrieves a set Cand𝐵 of candidate values for 𝑡 [𝐵] from 𝐺 . If Cand𝐵 is nonempty, a ranking
model is used to get a suggested value for 𝑡 [𝐵]. Otherwise, we propose a (optional) remedy strategy
to predict a value for 𝑡 [𝐵].
Candidate values retrieval. We retrieve the set Cand𝐵 of candidate values for 𝑡 [𝐵] via HER. Given
a partial tuple 𝑡 [𝐴], an attribute 𝐵 and a knowledge graph 𝐺 = (𝑉 , 𝐸, 𝐿), we first extract a set 𝑉𝑡
of vertices in 𝐺 that match 𝑡 [𝐴] via HER [50]. Then for each vertex 𝑣 in 𝑉𝑡 , we check each of its
𝑘-hop neighbors 𝑣 ′ in 𝐺 for a predefined bound 𝑘 . Let 𝜌 be a label path from 𝑣 to 𝑣 ′, sim(·) be a
similarity measure, e.g., BERT-based function of [50], and 𝜏 be a predefined similarity threshold.
If sim(𝜌, 𝐵) ≥ 𝜏 , we add 𝐿(𝑣 ′) as a candidate to Cand𝐵 .
Ranking Model. Next we train a ranking model to get the top-ranked value in Cand𝐵 as the
suggested value for 𝑡 [𝐵]. We reuse the lookup table Dict and EncoderG in M𝑐 for this purpose.
Specifically, we transform 𝐼𝑑𝑡 = (𝑡 [𝐴], 𝐵) to a matrix M𝑑

G as in M𝑐 . Then 𝐼𝑑𝑡 is encoded as I𝑑𝑡
= EncoderG (M𝑑

G). For each value 𝑐 in Cand𝐵 , we compute its graph embedding c = Dict[𝑐]. To
map the embeddings to the same latent space, we use two encoders EncoderI and Encoderc:

E[𝐴]=EncoderI (I𝑑𝑡 )=𝜎 (FCI (I𝑑𝑡 )), E[𝑐]=Encoderc (c)=𝜎 (FCc (c)),
where FC is the fully-connected layer, 𝜎 is the sigmoid function, and E[𝐴] (resp. E[𝑐]) denotes
the final embedding for 𝑡 [𝐴] (resp. 𝑐).

Intuitively, if E[𝐴] is correlated to E[𝑐], 𝑡 [𝐵] is likely to take value 𝑐 . By measuring correlation
via dot product, ⟨·, ·⟩, we have

M𝑑 (𝑡 [𝐴], 𝐵) = arg max
𝑐∈Cand𝐵

⟨E[𝐴], E[𝑐]⟩.

To make up the lack of training data, we adopt pairwise ranking with triplet loss. Given a set T𝑑 of
𝑁 training examples of the form (𝑡 [𝐴], 𝑐1, 𝑐2) (i.e., 𝑐1 is more related to 𝑡 [𝐴] than 𝑐2), triplet loss is

Lpair (T𝑑 ) =
1
𝑁

∑︁
(𝑡 [𝐴],𝑐1,𝑐2 ) ∈T𝑑

(
max(⟨E[𝐴], E[𝑐1]⟩ − ⟨E[𝐴], E[𝑐2]⟩ + 𝛾, 0)

)
,

where 𝛾 is a predefined hyperparameter and it denotes the margin between the two dot products
⟨E[𝐴], E[𝑐1]⟩ and ⟨E[𝐴], E[𝑐2]⟩.
(Optional) Remedy model. When Cand𝐵 is empty, we train a remedy model to predict 𝑡 [𝐵].
We adopt sentenceBert [106] as our base model, which treats 𝑡 [𝐴] as a sequence and returns
its embedding, denoted by E[𝐴] = sentenceBert(𝑡 [𝐴]). Similarly, given a value 𝑐 in dom(𝐵),
where dom(𝐵) is the active domain of 𝐵 (all 𝐵-attribute values of tuples in 𝐷), we compute
E[𝑐] = sentenceBert(𝑐). Then we let 𝑡 [𝐵] = arg max𝑐∈dom(𝐵) ⟨E[𝐴], E[𝑐]⟩. This strategy combines
two sentenceBert with shared parameters. In inference, we adopt Faiss [76] to retrieve the top-1
value from dom(𝐵). This step is optional, e.g., a user may opt to retain the null values if Cand𝐵
is empty, and SET only fills in null values requested by the user via M𝑑 .
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Table 1. The tested real-life datasets

Datasets |𝐷𝑜 | |𝐷 | # of real # of tuples
mismatches to correct

Citation [79] 51,485 22,826 207 1,028
College [4] 20,483 4,670 124 206
Person [10] 948,856 285,962 4,936 13,721
IMDB [16] 3,205,737 1,057,217 4,670 49,521

Table 2. Training time and statistic

Datasets Training time (s) #conflicts detected per REE+ Total #conflicts detected
M𝑐 M𝑑 for splitting for correcting for splitting for correcting

Citation [79] 465s 297s 31 163 1,178 6,194
College [4] 93s 113s 11 23 451 943
Person [10] 703s 3245s 336 811 15,120 36,495
IMDB [16] 1402s 4972s 353 6,663 10,943 206,553

7 EXPERIMENTAL STUDY
Using real-life datasets, we experimentally evaluated (1) the effectiveness of SET for deciding what
tuples to split and what tuples to correct (DS), assigning attribute value and correcting errors (AA),
and missing value imputation (MI); (2) the efficiency of SET (DS, AA and MI); and (3) the use of
SET in real life via a case study.
Experimental settings. We start with our experimental settings.
Datasets. We used four real-life datasets𝐷𝑜 : (1)Citation [79], an extended ER benchmark of citations
from DBLP and ACM. We enriched the schema with 7 more attributes in DBLP RDF data [6] by
using a predefined mapping function, and expanded Citation with more tuples if the mapping is
one-to-many. (2) College [4], a dataset of colleges in the USA. Following [88, 99, 120], we enlarged
College so that there is enough training data. (3) Person [10], a dataset of person tuples crawled
fromWikipedia, and (4) IMDB [16], a set of movies and TV Series released between 1905 and 2022.

The set 𝐷 of target tuples has two parts. (1) The set of merged tuples obtained by merging tuples
in 𝐷𝑜 via a state-of-the-art ER model ditto [88]. We fed pairs of tuples to ditto. If ditto predicts true,
we merged the tuples into one and added it to 𝐷 . If there is a conflict for an attribute (e.g., VLDB and
VLDBJ), we randomly picked one value so that mismatches are non-trivial to identify. The set of real
mismatches is the subset of merged tuples that are predicted true by ditto but they represent different
entities (need to split). (2) A subset of randomly selected tuples from 𝐷𝑜 whose size is about 5%
of the tuples in (1), with injected errors (i.e., our error ratio ≈ 5% [92, 108]). Here errors are injected
by modifying two attributes of each tuple with values in their domains as errors (need to correct).

Table 1 shows the number |𝐷𝑜 | of tuples, the number |𝐷 | of target tuples (including both tuples
from𝐷𝑜 andmerged tuples that are predicted positive by ditto), the number of real mismatches (false
positives of ditto to be split) and the number of tuples with errors to be corrected without splitting.
To better visualize the effect, we mainly focus on the merge of a pair of tuples in most experiments.

We used widely adopted KGs in benchmarks as 𝐺 : (1) DBLP RDF [6] for Citation; (2) college
data from National Center for Education Statistics [5] (transformed to RDF) for College; (3)
Wikidata [21] for Person; and (4) the officially released movie dataset [16] for IMDB.

Models and data extraction. We trained M𝑐 and M𝑑 (resp. ditto) with 20% (resp. 10%) of tuples
and used the remaining for testing. We used graph embeddings of 200-dimension with PyTorch-
BigGraph [84], and pretrained Bert [44] (bert_en_uncased). The learning rate for M𝑐 and M𝑑

(resp. ditto) is 5e-4 (resp. 3e-5). We adopted batch sizes 256, 128 and 256 forM𝑐 ,M𝑑 and ditto with
epochs 150, 100, 10, respectively. We adopted JedAI [103] as HER for its popularity. We report the
training time ofM𝑐 andM𝑑 on all datasets in Table 2: the training time ofM𝑐 is comparable to
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ditto in [88], whileM𝑑 takes longer since it has to handle a more complex ranking task.

Baselines. We implemented SET in Python [12]. We used the following baselines. (1) Bert [44],
an ML approach that treats DS and MI as downstream tasks of pretrained Bert, such that DS
(resp. MI) is conducted as a ternary classifier (resp. a remedy model), while AA is based on the
confidences of DS. (2) Raran, a hybrid ML error detection and correction method that adopts
Raha [92] for error detection, and uses Baran [91] for correction. Here Raha also complies KB
rules from 𝐺 for detecting violations. (3) Holoclean [108], a hybrid data repairing method that
integrates DCs [26] (also used for error detection), external information (i.e., the ground truth
Γ) and statistics (i.e., frequency). (4) Imp3C [45], which conducted data repairing based on CFD
deduction on the ground truth Γ, and naive Bayes.

We also compared the following variants of SET: (5) SETnoML, which adopts only REE+s without
ML predicatesM𝑐 andM𝑑 . (6) SETnoHER, which does not supportHER; note that withoutHER,M𝑑

of SETnoHER (which extracts candidate values via HER) is reduced to a remedy model (see Section 6).
(7) SETNC, which adopts the brute-force methods for the chase, via match enumeration. Since SET
and SETNC produce the same results, we compared with SETNC only for efficiency, and with other
baselines for effectiveness.

Note that no prior systems support tuple splitting. Holoclean, Imp3C and Raran only detect and
correct errors. Nevertheless, these methods were evaluated in the tuple splitting setting for which
they were not designed since they only aim to correct individual tuples. We extended Bert for both
tuple splitting and error correcting.
Rules, ground truth and labels.We mined 38, 41, 45 and 31 REE+s on Citation, College, Person and
IMDB, respectively (Section 3). We report the number of conflicts detected (per REE+), for splitting
tuples and correcting tuples in Table 2. Note that multiple conflicts can be detected on the attributes
of a single tuple by different REE+.

For initial ground truth Γ, we randomly sampled 5% tuples from each dataset and validated the
facts in its corresponding knowledge graph 𝐺 ; we provided HoloClean and Imp3C with the same
Γ, which is gradually accumulated during the chase. To be fair, we also set the labeling budget
of Raran to be 5% of data in the dataset.
Configuration. We conducted the experiments on a single machine powered by 256GB RAM and
32 processors with Intel(R) Xeon(R) Gold 5320 CPU @2.20GHz. Each test was run 3 times; the
average is reported here. For the lack of space we report results on some datasets; the results on
the others are consistent (reported in [12]).

Experimental results. We next report our findings.
Exp-1 Effectiveness. We first evaluated the overall accuracy (including DS, AA and MI) using
𝐹1-score = 2 × recall×precision

recall+precision , where recall is the ratio of tuples we correctly rectify, split and impute
to all tuples that need to be corrected, split and imputed, and precision is the ratio of correctly
rectified, split and imputed tuples to all tuples we correct, split and impute. Unless stated explicitly,
the default scaling factors (resp. sampling ratio) of 𝐺 , the set Σ of REE+s and the set 𝐷 of target
tuples (resp. the initial Γ) are all 100% (resp. 5%). We set 𝛿 = 0.5 and 𝑘 = 1, where 𝛿 and 𝑘 denote
the threshold of M𝑐 and the number of hops for M𝑑 , respectively. To efficiently evaluate whether
split tuples are unique entities, we built a tree-based index structure on 𝐺 to support fast search
and checking. The accuracy of error correction in Raran is not reported on IMDB and Person since
their generated features are too large to fit in memory.
Accuracy vs. baselines. Denote by SETsplit (resp. SETcorrect) when SET is only used to split tuples
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Fig. 5. Performance evaluation

(resp. correct errors). As shown in Figures 5(a) and 5(b) on Citation and College, respectively SET
has the best 𝐹1-score on both datasets. Besides, we find the following.

(1) As expected, SET is 43.5% and 19.8% more accurate than SETsplit and SETcorrect on average,
respectively. This shows SETcorrect or SETsplit alone does not suffice for improving the overall data
quality, since they solve a ternary problem (i.e., distinguish tuples to split, tuples to correct, and
tuples that need neither split nor correction) using binary classification (e.g., SETcorrect decides
whether it corrects a tuple or not). Consider a mismatch of two entities. SETcorrect treats the true
values from one entity as errors, and corrects them with the information from the other entity.
No matter which entity SETcorrect chooses to fix, it loses the information of the other entity, which
inevitably affects the accuracy. Similar explanation applies to existing data repairing methods that
focus on error correction (see below).

(2) SET beats the baselines, e.g., on average its 𝐹1-score is 0.92, as opposed to 0.389, the best of rule-
based methods Holoclean and Imp3C, and 0.607, the best of ML-based methods Raran and Bert. If
we focus on correcting errors alone (the binary problem), Raran performs as the best repairing-based
baseline and is comparable to SETcorrect, since both of them can benefit from𝐺 and the ground truth.
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However, when it comes to tuple splitting (a ternary problem), its performance inevitably degrades,
due to similar reasons above. Worse still, the inaccuracy is propagated and magnified along the
splitting process, from DS to AA to MI, leading to even worse overall accuracy. This explains why
existing data repairing techniques do not suffice for solving the tuple splitting problem.

(3) We evaluated the separate accuracy forDS, AA andMI in Figures 5(c)-5(d). We focus on 𝐹1-scores
on each task, e.g., forDS, the 𝐹1-score measures tuples that SET correctly decides to fix/split. SET con-
sistently beats the baselines, e.g., its 𝐹1-score is 31.8%, 8.3% and 39.5% higher than the best of the base-
lines in the three, respectively. This is because SET simultaneously corrects errors and splits tuples
by combining rules, ML correlation and data extraction, while the baselines only correct conflicts,
and only use either rules or ML models; this also verifies the need for splitting. SET not only predicts
correlation but also deduces reliable values with Γ and𝐺 , and accumulates ground truth. Moreover,
its 𝐹1-score is 57.9% better than Bert on average, showing the effectiveness of unifying logic and ML.

Compared with its variants, SET also does the best in each stage, e.g., its 𝐹1-score is 13.5% higher
than SETnoML on DS, and 22.4% higher than SETnoHER on MI. Note that SETnoML is sometimes as
good as SET on MI, when HER is accurate enough to impute missing values via data extraction
from knowledge graphs.

We next tested the impact of various parameters on the accuracy.
Varying |Σ|.We varied |Σ| from 20% to 100%. We focus on AA, and the trend of DS andMI is consis-
tent. As shown in Figure 5(e), (1) SET gets more accurate when given more REE+s, e.g., its 𝐹1-score
increases by 2.1% on College for AA. This is because more REE+s have more valuations, and more
values can be correctly assigned/fixed by SET. (2) SET beats HoloClean and Imp3C by 34.8% and
32.3% on average, respectively, even with only 20% rules. This verifies the effectiveness of REE+s that
support correlation and extraction predicates for error correction and missing value imputation (not
shown). (3) With 20% of rules, SET beats ML-based Raran and Bert by 10.8% and 52.9%, respectively,
since SET utilizes correlation analysis, which is particularly useful for the tuple splitting problem.

SET beats its variants. On average, (a) it is 17% more accurate than SETnoML. This again verifies
the need for correlation analysis in splitting or correcting tuples. (b) Its 𝐹1-score is 33.9% higher
than SETnoHER, since SET references knowledge graphs to decide what tuples to split/correct, and
generates more certain fixes. (c) The increasing treads of SET are less obvious than its variants,
since logic rules, ML models and data extraction complement each other.
Varying |Γ |. As shown in Figure 5(f) by varying the sampling ratio of initial ground truth Γ from
1% to 5%, (1) SET has a higher 𝐹1-score when |Γ | gets larger, as expected, e.g., the 𝐹1-score of SET
is improved by 2.3% on College for AA. (2) SET performs the best; its 𝐹1-score beats the best of
the baselines, Raran, by 10.8%. (3) With only 1% of ground truth, SET outperforms the baselines
by 39.8% on average. This verifies that SET takes good advantage of ground truth. Similarly the
sampling ratio of Γ affects DS andMI.
Varying |𝐺 |. We varied the size |𝐺 | of knowledge graphs that can be referenced from 20% to 100% in
Figure 5(g); this is translated to 20% to 100% of graph embeddings that can be referenced byM𝑐 and
M𝑑 . As expected, the 𝐹1-score of SET is improved by 18.5% forMIwhen |𝐺 | is from 20% to 100%. This
is because (a)HER could extract more information from𝐺 , and (b)M𝑑 could get richer embeddings.
Varying 𝛿 . Varying the threshold 𝛿 of M𝑐 from 0.4 to 0.8, we evaluated its impact on accuracy
in Figure 5(h). To illustrate better, we report precision and recall instead of 𝐹1-score. Note that 𝛿
affects DS and AA differently. (a) For AA, a value is assigned to 𝑡 if it is strongly correlated with the
existing values in 𝑡 (i.e.,M𝑐 (𝑡 [𝐴], 𝑡 [𝐵]) ≥ 𝛿). With larger 𝛿 , less values could be assigned and hence
recall gets smaller. (b) In contrast, the assignment is more likely to be correct when 𝛿 increases,
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and precision gets higher. DS is affected conversely. To strike a balance, we set 𝛿 = 0.5 by default.
Varying null%. To test the impact of null values, we also evaluated SET by varying the ratio of null
values (null%) in 𝐷 to be filled in, from 1% to 5% in Figure 5(i). As expected, the accuracy of SET
degrades slightly when more null values need to be filled in. This said, SET still performs the best
compared with all the baselines.
Varying #tuples merged. We varied the # of tuples that we merged into one in Figure 5(j), where
we only compared SET and its variants. When more tuples are merged, it is more challenging to
split them, and the accuracy gets a bit lower. Nevertheless, the 𝐹1-score of SET is still as high as
0.936 when 3 tuples in College are merged into one.
Accumulated Γ. We report in Figure 5(k) the size of Γ of ground truth accumulated during the
process of tuple splitting and error correcting, given 1% initial ground truth. As shown there, |Γ |
gets larger after each task; it starts with 832 validated tuples in Γ on College; then |Γ | is increased
1.7-fold (resp. 2-fold) after DS (resp. MI).

We also tested the impact of hop number 𝑘 of M𝑑 on MI (not shown). We find that the accuracy
of SET is not sensitive to 𝑘 since most values can be found in 1 hop; it takes longer with larger
𝑘 since more vertices in 𝐺 have to be checked. Thus we set 𝑘 = 1 by default.

Exp-2: Efficiency. We first compared the efficiency of SET and the baselines in the default settings.
To be fair, the ML training time of the baselines is excluded. Then we compared the efficiency of
SET and SETNC to justify our implementation of chase. Note that we do not report the time of a
baseline if it could not finish within 3 hours. Similarly, we checked 𝐺 to decide whether and how
to split tuples with conflicts using the tree-based index on 𝐺 .
Efficiency vs. baselines. As shown in Figure 5(l) on three real-life datasets, the time of SET is com-
parable with or slightly slower than rule-based methods (e.g., Imp3C) in most cases, but is much
faster than ML-based methods, e.g., SET takes 46s to execute on College, which is 2X and 3.3X
faster than Bert and Raran, respectively.
Efficiency vs. SETNC. Figures 5(m) to 5(p) compare SET and SETNC.

(1) Varying |𝐷 |. Varying |𝐷 | from 20% to 100%, we report the total time in Figure 5(m). As expected,
both methods run slower when |𝐷 | increases, since more tuples need to be checked. Nonetheless,
SET is 13.5X faster than SETNC on average. This shows that maintaining partial chasing results
avoids costly enumeration. SET is efficient: it takes 1,481s when 𝐷 has 1,057,217 tuples.
(2) Varying |𝐺 |. We varied knowledge graph |𝐺 | from 20% to 100% in Figure 5(n). Both methods
take longer with larger 𝐺 since they check more. SET is still 11.6X faster than SETNC on average.
(3) Varying |Σ|. We varied |Σ| from 20% to 100%. As reported in Figure 5(o), both SET and SETNC
take longer when given more REE+s, as expected, since it needs more time to process the valuations
when given more REE+s. SET is 11.8X faster than SETNC on average.
(4) Varying |Γ |. Varying sampling ratio of ground truth from 1% to 5% in Figure 5(p), SET takes less
time, from 42s to 30s. This is because the time of SET is dominated by ML prediction and data extrac-
tion, while logic deduction is fast. With larger Γ, more mismatches (resp. conflict/missing values)
can be identified (resp. corrected/imputed) by REE+s, leaving less work to ML andHER and thus, the
overall runtime is reduced. However, SETNC does not behave similarly, since its cost is dominated
by costly valuation enumeration. SET consistently beats SETNC, e.g., it is 9.1X faster on average.

Exp-3. Case study. We crawled a person dataset with schema 𝑅 = (name, DoB, death, occupation,
party) from Wikipedia [7]. We obtained person tuples based on names (e.g., Hirai Tarō [7]) and
cited Wiki pages (e.g., [9]). From the tuples, SET found a real mismatch, represented by 𝑡 = (“Hirai
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Tarō”, “21/10/1894”, “28/07/1965”, “Novelist”, “Liberal democratic party”). Here 𝑡 is a mismatch
from a famous Japanese novelist and a Japanese councilor (see the erroneous link to “Hirai Tarō”
in [9]). To correct it, SET splits 𝑡 as follows.

(1) DS. By applying REE+ 𝜑8 : 𝑅(𝑡) ∧ M𝑐 (𝑡 [occupation], 𝑡 [party]) ≤ 0.2 → false, SET finds the
correlation between 𝑡 [occupation] and 𝑡 [party] is low (e.g., 0.1). Thus, 𝑡 is an abnormal tuple that
needs to be split/corrected; party is its conflicting attribute. We reference Wikidata [21]𝐺 by HER
and confirm that 𝑡 is a mismatched tuple of distinct entities (i.e., 𝑓 (𝑡) ∉ E). We then (initially) split
TS(𝑡) into {𝑡𝑎, 𝑡𝑏}, where 𝑡𝑎 = (“Hirai Tarō”, null, null, “Novelist”, null) and 𝑡𝑏 = (“Hirai Tarō”, null,
null, null, “Liberal democratic party”).

(2) AA. To distribute “21/10/1894” of 𝑡 [DoB], we apply 𝜑9 : 𝑅(𝑡) ∧ M𝑐 (𝑡 [name, occupation],
𝑡 [DoB] = “21/10/1894”) ≥ 0.6 → 𝑡 [DoB] = “21/10/1894” via valuation ℎ9 : 𝑡𝑎 → 𝑡 of 𝜑9. Since
M𝑐 (𝑡𝑎 [name, occupation], “21/10/1894”) = 0.8 > 0.6, “21/10/1894” is strongly correlated with 𝑡𝑎 ;
thus we assign it to 𝑡𝑎 [DoB] by 𝜑9. Similarly, we assign “28/07/1965” of 𝑡 [death] to 𝑡𝑎 [death].
(3) MI. To impute null values in TS(𝑡), e.g., 𝑡𝑏 [occupation], SET uses Wikidata as external knowl-
edge graph 𝐺 and applies 𝜑10 : 𝑅(𝑡) ∧ vertex(𝑥,Wikidata) ∧ HER(𝑡, 𝑥) ∧ match(𝑡 [occupation],
𝑥 .(occupation)) → 𝑡 [occupation] = val(𝑥 .occupation), setting 𝑡𝑏 [occupation] = “Councilor”.
After filling in all requested null values, the splitting of 𝑡 is done, with 𝑡𝑎 = (“Hirai Tarō”,
“21/10/1894”, “28/07/1965”, “Novelist”, “Nonparty”) and 𝑡𝑏 = (“Hirai Tarō”, “17/07/1905”, “04/12/1973”,
“Councilor”, “Liberal democratic party”).

Summary. We find the following. (1) By unifying logic deduction, ML correlation and data
extraction, SET is the most accurate for the overall tuple splitting problem, e.g., 0.92 𝐹1-score on
average as opposed to 0.607, 0.387 and 0.389 by repairing-based Raran, HoloClean and Imp3C, and
0.428 by ML-based Bert. (2) SET consistently outperforms the baselines in DS, AA and MI, e.g., its
𝐹1-score is 31.8%, 8.3% and 39.5% higher than the best of baselines on average, respectively. (3) SET
outperforms its variants SETnoML and SETnoHER in accuracy by 22.6% on average. This justifies the
need for ML correlation model and data extraction. (4) SET is 19.8% more accurate than SETcorrect
on average; this justifies the need for tuple splitting. (5) Tuple splitting/completing with the chase
is efficient by maintaining partial results; it reduces the total time from 20,734s to 1,481s on IMDB.

8 CONCLUSION
The novelty of the work consists of (1) a new problem for tuple splitting; (2) an extension of error
correction with tuple splitting, by unifying logic, ML and data extraction in the same process; (3)
ML models to assess correlation among attributes and predict missing values; (4) extended REEs to
support correlationmodels, heterogeneous ER and data extraction; and (5) algorithms for identifying
tuples of mismatched entities, splitting tuples, deducing certain fixes and imputing missing values
with various REE+s. Our experimental study has shown that SET is promising in practice.

One topic for future work is to extend SET for imputing both missing values and missing tuples.
Another topic is incremental splitting in response to updates. A third topic is to study the impact
of bias in datasets on correlation model M𝑐 and overall accuracy.
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