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This paper studies two questions about rule discovery. Can we characterize the usefulness of rules using
quantitative criteria? How can we discover rules using those criteria? As a testbed, we consider entity enhancing
rules (REEs), which subsume common association rules and data quality rules as special cases. We characterize
REEs using a bi-criteria model, with both objective measures such as support and confidence, and subjective
measures for the user’s needs; we learn the subjective measure and the weight vectors via active learning. Based
on the bi-criteria model, we develop a top-𝑘 algorithm to discover top-ranked REEs, and an any-time algorithm
for successive discovery via lazy evaluation. We parallelize these algorithms such that they guarantee to reduce
runtime when more processors are used. Using real-life and synthetic datasets, we show that the algorithms
are able to find top-ranked rules and speed up conventional rule-discovery methods by 134X on average.
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1 INTRODUCTION
Rules play a critical role in many aspects of data management, e.g., association rules reveal hidden
regularities among entities, entity resolution (ER) rules identify tuples that refer to the same entity,
and conflict resolution (CR) rules resolve conflicts of the entities. Recently, rule-based methods
find new applications in drug repurposing to treat new diseases with known drugs, and adverse
drug reaction (ADR) prediction to identify undesirable effects [123]. Drug discovery is costly and
time-consuming, starting from target selection and validation, through preclinical screening, to
clinical trials [41]. On average, the development of a new drug takes 15 years [27], costs $8M [7],
and has a high risk of failure (>90% [12]). To shorten the cycle, reduce the cost and increase the
success rate, computational methods have been explored for identifying drug-disease associations
(DDA) and drug-drug interaction (DDI). There has also been increasing need for ER and CR to
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reduce false relations caused by noise, and for explanations to justify mined DDA and DDI [123].
To make practical use of rules, it is a must to be able to discover rules from real-life data. However,

a major problem in practice is that rule discovery often yields excessive rules, e.g., on a dataset with
27 attributes and 368 tuples, 128,726 functional dependencies (FDs) are found [85]. Practitioners are
overwhelmed by excessive rules and have to spend a huge amount of time to manually inspect and
select rules that fit their needs. This staggering cost hampers the applicability of rule-based methods.
Typically, domain experts have accumulated a collection of useful “rules” from their practice,

e.g., they already know some well-understood uses of the drugs. These rules might be mined using
conventional measures, e.g., support and confidence for how often the rules can be applied and how
strong the associations between their preconditions and consequences are. However, these “univer-
sal” objective measures often do not suffice in practice, since excessive irrelevant rules could also
be returned. What the domain experts want are to focus discovery on rules that fit their needs e.g.,
rules that share vital characteristic with the rules they know effective and thus, help them identify
more uses of drugs. For an abundant of candidate rules returned by traditional discovery methods,
the experts often find them not equally potent for therapeutic intervention. They only want the
most promising ones and prioritize them for the next phases, e.g., for costly clinical trials, since they
cannot afford to try them all. They want more rules to be retrieved only if they find the selected ones
unsatisfactory. Our fraud-detection users also want only rules for the most promising fraud patterns.

Example 1: To illustrate these needs, consider a pharmaceutical company who already knows
that drug 𝑡𝑎 can be used for disease 𝑠𝑎 . What they want from rule discovery is to know whether
𝑡𝑎 can be used to treat other diseases, i.e., DDA for drug repurposing. The rule 𝜑1 may fit the need
(note that 𝜑1 can be expressed by [24, 38, 72]).
𝜑1 : Drug 𝑡𝑎 is a potential treatment of disease 𝑠𝑏 if (a) 𝑡𝑎 has been used to cure disease 𝑠𝑎 and (b) 𝑠𝑎
and 𝑠𝑏 have common therapies.
As recognized in [29], 𝜑1 is promising and should get a higher priority for clinical trials. In
Section 2, we will formally express 𝜑1 and give more examples for other pharmaceutical needs,
e.g., for identifying the equivalence of generic and brand-name drugs [73]. 2

This gives rise to several questions. How can we discover and rank rules to reflect their potential,
and disclosemore uses in addition towhat the experts have already known? If the selected candidates
are not satisfactory, can we find more rules efficiently, without starting from scratch? How can we
parallelize the process and scale with the increasing data? Can we interpret discovered DDA and
DDI, and cope with noise, which are critical but are still open in pharmaceutical scenarios [123]?

Contributions & organizations. This paper tackles these issues, exploring a new approach for
discovering top-ranked rules. As proof of concept, we consider entity enhancing rules (REEs) [38],
which were originally designed for ER and CR, and recently find new applications in association
analysis. REEs (a) embed ML models in logic rules, (b) unify ER, CR and association analysis in
the same process, (c) are collectively defined across multiple tables, and (d) subsume association
rules [94], matching dependencies (MDs) [11, 13, 32], denial constraints (DCs) [10] and conditional
functional dependencies (CFDs) [33, 35] as special cases. REEs are used by Rock, an industrial
system for drug discovery. We will review REEs in Section 2.
(1) Bi-criteria model (Section 3). We propose a bi-criteria model to characterize rules, in terms of
(a) conventional objective measures, and (b) new subjective measures to fit users’ needs. The two
parts bear various weights to serve different users. Experienced users may assign a higher weight
to subjective measures in favor of rules that fit application needs, while novice users may opt to
prioritize objective measures to find rules with high support and confidence. Since it is unrealistic

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 70. Publication date: May 2023.



Discovering Top-k Rules using Subjective and Objective Criteria 70:3

to ask users to specify the weights explicitly, we propose an active learning method to learn the
user’s need. In addition, we show that the conventional notion of support does not fit collective
rules such as REEs, i.e., it is no longer anti-monotonic; in light of this, we revise the notion for REEs
and show its anti-monotonicity.
(2) Discovering top-ranked rules. We develop a set of techniques:
◦ Based on the bi-criteria model, we develop a top-𝑘 discovery algorithm (Section 4), which
reduces excessive rules. The algorithm learns a score bound and terminates early as soon as it
finds top-𝑘 rules. It is far less costly than conventional rule discovery algorithms, which first
find all the rules that hold on a dataset, and then sort the rules and return top-𝑘 ones.

◦ Users often want to continue to find the next top-𝑘 rules if they are not satisfied with the
current ones; this is analogous to how we use search engines. In response to this we provide
an anytime-algorithm to find the next top-𝑘 rules if needed, via lazy evaluation (Section 5). By
repeatedly running the algorithm, users can also find all the rules that hold on a dataset in order.

◦ To scale with large data, we parallelize the top-𝑘 algorithm and the anytime algorithm across
a cluster of machines (Section 6). We show that the algorithms are parallelly scalable [64], i.e.,
they guarantee to reduce the runtime when more machines are used. Hence the algorithms are
able to efficiently discover rules when the data grows big, by adding more computing resources.

(3) Experimental study (Section 7). Using real-life and synthetic datasets, we empirically find the
following. (a) Top-𝑘 REEs discovery speeds up conventional methods by 134X on average. It takes
183s on NCVoter with 1,681,617 tuples for 𝑘 = 10 with 20 machines, versus 15,798s by traditional
methods. (b) The anytime algorithm is 52.8X faster than the top-𝑘 one when users want the 4th
top-10 REEs. (c) Our bi-criteria model is 14.1% more accurate than the state-of-the-art language
models, and its subjective measure improves the accuracy from 0.69 to 0.92. (d) The algorithms are
parallelly scalable; they are 3.12X faster using 20 machines instead of 4.
To the best of our knowledge, this work makes the first effort to employ a bi-criteria model, to

tackle the issues of excessive candidates and prohibitive cost in rule discovery, by incorporating hu-
man experience. It also provides the first top-𝑘 and anytime algorithms, with the parallel scalability,
to demonstrate the effect of the bi-criteria model on finding top ranked rules and reducing the cost.

Related work. The related work is categorized as follows.
Rule discovery. A number of rule discovery algorithms have been developed for ER, CR and asso-
ciation analysis, classified as follows. (1) Levelwise search. TANE [57], FUN [84], FD_mine [120]
discover FDs based on a lattice structure, which is latter extended by Depmine [77], HyFD [86]
DynFD [104], and SMFD [47]. Levelwise methods for CFDs andMDs include CTANE [34], tableau
generation [50] and [107]. [36] adopts sampling to discover REEs in large datasets. Apriori [8]
and its variants (e.g., DIC [17] and GSP [108]) employ breath-first search to mine association
rules or frequent itemsets. (2) Depth-first search. DFD [5] and FastFDs [118] adopt the depth-first
search in the lattice to mine FDs. For CFDs and DCs, depth-first search approaches also apply,
e.g., FastCFDs [34], FastDC [23], Hydra [15], DCFinder [87] and ADCMiner [76]. FP-growth [52]
and Eclat [122] use depth-first search to mine association rules or frequent itemsets. (3) Hybrid
approaches. HyMD [103] and MDedup [62] employ both levelwise and depth-first search to dis-
coverMDs. (4) Learning-based approaches. Inductive learning [40] and structure learning [124] have
been utilized to find FDs. [106] and [61] adopt rule learning strategies to find MDs (see [22] for
more ER solvers). Learned rules are also used for blocking and debugging, e.g., Smurf [19]. Similar
techniques also apply to association rule mining [99]. (5) Top-k discovery. Closer to this work are
top-𝑘 algorithms for discovering association rules in relations [116] and graphs [39]. Mining of
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tid cid (DrugBank) name type weight summary formula manufacturer
𝑡1 DB00915 Amantadine Small Molecule 151.2487 A medication used to treat dyskinesia in Parkinson’s patients... C10H17N Actavis totowa IIc
𝑡2 DB00914 Phenformin Small Molecule 205.2596 A biguanide hypoglycemic agent with actions and uses similar to .. C10H15N5 n/a
𝑡3 DB00937 Diethylpropion Molecule 205.2961 An appetite suppressant for short term treatment of obesity... C13H19NO Sanofi aventis us llc
𝑡4 DB0091 Phenylethylbiguanide Molecule 205.26 An agent belonging to the biguanide class of antidiabetics... C10H15N5 US Vitamin Corp.
𝑡5 DB000898 Ethanol Small Molecule 46.0684 A colorless liquid rapidly absorbed from the gastrointestinal tract... C2H6O Miles lab inc

Table 1. Example Drug relation 𝐷1
tid cid uid (MeSH) term description classification established_date revision_date
𝑡6 DB00915 D003972 Cognition Disorders Disorders characterized by idsturbances in mental processes... Mental 1969-01-01 2016-05-31
𝑡7 DB00914 D000749 Anemia A disorder by ANEMIA, abnormally large red blood cells... Hematologic 1991-01-01 2009-07-06
𝑡8 DB0091 D00074 Anemia Disorder of anemia, large red blood cells... Hematologic 1991-01-01 2009-070-06
𝑡9 DB00914 D001284 Atrophy Decrease in the size of a cell, tissue, organ, or multiple organs... Pathological 1966-01-01 1999-11-08
𝑡10 DB00937 D009765 Obesity A status with BODY WEIGHT that is grossly above the standards... Nutritional & Metabolic 1966-01-01 2021-07-07
𝑡11 DB00898 D000169 Acrodermatitis Dermatitis of hands or feet so do not bother to... Skin 1966-01-01 2015-06-23
𝑡12 DB00888 D004485 Eczema A pruritic papulovesicular dermatitis occurring as a reaction to... Tissues 1966-01-01 1992-05-08

Table 2. Example Disease relation 𝐷2

association rules and sequential patterns has also been studied in [45] and [111].
This work differs from the prior work as follows. (1) We propose a novel bi-criteria model that

combines both objective and subjective measures, the first of the kind for ER, CR and association
rules. (2) We use active learning and pairwise ranking to learn the ranking of rules, and capture the
user’s preference. (3) We extend our top-𝑘 algorithm to an anytime algorithm, for users to find the
next top-𝑘 results when needed, without re-discovering starting from scratch. No existing work
has considered anytime rule discovery.
Subjective and objective measures. The need for considering objective and subjective measures
has long been recognized, to reflect users’ universal and individualistic preference (see [48] for
a survey). However, we are not aware of any rule discovery algorithms that take both measures
into account. While MDedup [62] employs objective features for MDs and adopts the ML
regression model and Gaussian Process to learn anMD score, it aims to discoverMDs with high
F-measures, not for users’ application needs. While ML models [28, 105] were designed to learn
the representations of rules, they do not consider how to learn subjective criteria for rules.
This work studies top-𝑘 rule discovery based on a bi-criteria model, and proposes a learning-

based approach to quantifying subjective measures. It differs from [39, 116] in the use of different
ranking criteria and thus different early-termination strategies.
Rule learning. Rule learning has been studied for ER, CR and association analysis [98]. Rule induction
methods such as IREP [44], RIPPER𝑘 [24] and TRIPPER [113] employ growing sets (resp. pruning
sets) to learn rules (resp. reduce rules). Inductive logic programming (ILP) [83] utilizes automated
reasoning and knowledge representation. Decision tree methods, e.g.,CART [16], ID3 [90],C4.5 [91]
and C5.0 [92], apply greedy splitting strategies; its optimizations include GOSDT [72] for data
imbalance and continuous variables, CORELS [9] via branch-and-bound algorithms with tight
bounds, and OSDT [56] to construct optimal decision trees over binary variables. Bayesian rule set
(BRS) [115] adopts a Bayesian method to build the rule set. Approximate inference [115], Monte-
Carlo search [20], smart guessing [20] and modified prefix trees [9] have also been explored to
prune the exponential search space.
This work differs from rule learning methods in that it aims to mine the top-𝑘 among all rules

hold on the data, while rule learning methods aim to find some rules to minimize a predefined loss.
ML. MLmodels have been studied for ER, CR or association analysis. (1)Models for ER and link predic-
tion, via logistic regression and SVM (see [49] for a survey), unsupervised learning, e.g.,ZeroER [117],
and deep learning, e.g., Ditto [70], BertER [66], DeepMatcher [82], DeepER [31], AutoEM [125],
GraphER [67],MPM [43]. (2) Models for CR, e.g., HoloClean [96], HoloDetect [54], Raha [78] and
SLiMFast [97], for error detection/correction and data fusion. (3) Models for similarity checking, by
using languagemodels such as theBERT-basedmodels [26, 65, 75, 95], XLNet [119] andGPT [18, 93].
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This work is not to develop another ML model. Instead, we show how to leverage existing
well-trained ML models by embedding them as ML predicates in REEs. As will be seen in Example 2,
one can even plug in a link prediction ML models into REEs to reveal the “hidden” associations
between entities, to facilitate analysis.
Parallel discovery. Parallel methods have been studied for mining FDs [46, 47, 68, 69, 101, 102],
DCs [102], REEs [36], frequent itemsets [79], and sequence patterns [21, 51, 71] (see [45, 59] for
surveys). This work provides the first top-k and anytime algorithms for relational data that guarantee
the parallel scalability, i.e., the execution time is guaranteed to be reduced if more machines are
used, when both computational and communication costs are considered.

2 ENTITY ENHANCING RULES
We next review entity enhancing rules (REEs) defined in [38].

We define REEs over a database schema R = (𝑅1, . . . , 𝑅𝑚). Each 𝑅 𝑗 is a schema 𝑅 𝑗 (𝐴1 : 𝜏1, . . . , 𝐴𝑛 :
𝜏𝑛), where 𝐴𝑖 is an attribute of type 𝜏𝑖 . An instance D of R is a collection (𝐷1, . . . , 𝐷𝑚), where 𝐷𝑖

is a relation of 𝑅𝑖 . We assume w.l.o.g. that each tuple 𝑡 in D has an id attribute, which uniquely
denotes the entity that 𝑡 represents.

Predicates. Predicates over R are defined as follows:
𝑝 ::= 𝑅(𝑡) | 𝑡 .𝐴 ⊕ 𝑐 | 𝑡 .𝐴 ⊕ 𝑠 .𝐵 | M(𝑡 [𝐴], 𝑠 [𝐵]),

where ⊕ is an operator in {=,≠}. While REEs also support comparison operators, i.e., {<, ≤, >, ≥}
[38], we consider = and ≠ in this paper to simplify the discussion. Following tuple relational calculus
[6], (a) 𝑅(𝑡) is a relation atom over R, where 𝑅 ∈ R, and 𝑡 is a tuple variable bounded by 𝑅(𝑡); (b) 𝑡 .𝐴
denotes an attribute of 𝑡 when 𝑡 is bounded by 𝑅(𝑡) and𝐴 is an attribute in 𝑅; (c) 𝑡 .𝐴⊕𝑐 is a constant
predicate when 𝑐 is a value in the domain of 𝐴; and (d) 𝑡 .𝐴 ⊕ 𝑠 .𝐵 compares compatible attributes 𝑡 .𝐴
and 𝑠 .𝐵, i.e., tuple 𝑡 (resp. 𝑠) is bounded by 𝑅(𝑡) (resp. 𝑅′(𝑠)), and 𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′ have the same
type. Moreover, (e) M(𝑡 [𝐴], 𝑠 [𝐵]) is an ML predicate, where 𝑡 [𝐴] and 𝑠 [𝐵] are vectors of pairwise
compatible attributes.
Here M can be any existing ML model that returns a Boolean value, e.g., Mreg ≥ 𝛿 for a

regression modelMreg and a bound 𝛿 . We considerM such as (1) NLP models, e.g., Bert [26], for
text classification; (2) ER models and link prediction models, e.g., ditto [70] and DeepMatcher [82],
to reveal “hidden” associations between tuples across relations; and (3) models for data fusion, error
detection and correction, e.g., HoloClean [96] and HoloDetect [54].

REEs. An entity enhancing rule (REE) 𝜑 over R is defined as
𝜑 : 𝑋 → 𝑝0,

where 𝑋 is a conjunction of predicates over R, and 𝑝0 is a predicate over R such that all tuple
variables in𝜑 are bounded in𝑋 . We refer to𝑋 as the precondition of𝜑 , and 𝑝0 as the consequence of𝜑 .

Example 2: Consider an example from a (simplified) drug-disease database with self-explained
schemas Drug (cid, name, type, weight, summary, formula, manufacturer) and Disease (cid, uid,
term, description, classification, established_date, revision_date).

Below are example REEs over the database schema, where the rule in Example 1 for identifying
DDA can be written as 𝜑1 below.
(1) 𝜑1: Drug(𝑡𝑎) ∧ Disease(𝑠𝑎) ∧ Disease(𝑠𝑏) ∧ 𝑡𝑎 .cid = 𝑠𝑎 .cid ∧Mtherapy (𝑠𝑎, 𝑠𝑏) → 𝑡𝑎 .cid = 𝑠𝑏 .cid.
HereMtherapy is an ML model for checking the common therapies of two diseases. This rule helps
us discover the use of a known drug 𝑡𝑎 for the disease in 𝑠𝑏 since Disease has not recorded the fact
“𝑡𝑎 can be used for 𝑠𝑏” yet.
(2) 𝜑2 : Drug(𝑡𝑎) ∧ Drug(𝑡𝑏) ∧ 𝑋 → Mbio (𝑡𝑎, 𝑡𝑏), where Mbio is a model for predicting the
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bioequivalence between two drugs, 𝑋 =
⋂

𝐴𝑠 ∈T 𝑡𝑎 .𝐴𝑠 = 𝑡𝑏 .𝐴𝑠 and T denotes a designated set of
biomedical features in Drug (not shown in the simplified schema), including dosage form, safety,
strength, route of administration, performance characteristics, and intended use, etc. Here conditions
in 𝑋 interpret the prediction of Mbio in logic. Such interpretability is critical to pharmaceutical
applications. This rule is consistent with the standard used by U.S. Food and Drug Administration
(FDA) for identifying the equivalence of generic and brand-name drugs [73].
(3) 𝜑3 : Drug(𝑡𝑎) ∧ Disease(𝑠𝑎) ∧ Disease(𝑠𝑏) ∧ 𝑡𝑎 .cid = 𝑠𝑎 .cid ∧ 𝑠𝑎 .term = “Atrophy” ∧
Mnew (𝑡𝑎, 𝑠𝑏) ∧ Mtherapy (𝑠𝑎, 𝑠𝑏) → 𝑠𝑏 .classification = “Pathological”, where Mtherapy is as above,
and Mnew (𝑡𝑎, 𝑠𝑏) is a link prediction model for telling whether a drug 𝑡𝑎 can be used to cure 𝑠𝑏 .
Intuitively, 𝜑3 says that if (a) a drug 𝑡𝑎 has been used for a disease 𝑠𝑎 termed “Atrophy”, which
has common therapies as 𝑠𝑏 (checked byMtherapy), and (b) 𝑡𝑎 is likely to be used for 𝑠𝑏 , then 𝑠𝑏 is
classified as “Pathological”. Note that here the fact “𝑡𝑎 cures 𝑠𝑏” is predicted by the link prediction
model Mnew. This rules can be used to fix errors in the classification attribute. 2

REEs embedML classifiers in rules, unifying ER, CR and association analysis.With the comparison
primitives, REEs strictly generalize common data quality rules (FDs, CFD, DCs andMDs) and asso-
ciation rules [38], and may carry multiple tuple variables (e.g., 3 variables in 𝜑1) for collective analy-
sis [14]. We can deduce DDA/DDI, give explanations and fix errors by REEs in a uniform framework.

Semantics. Consider an instance D of R. A valuation ℎ of tuple variables of 𝜑 in D, or simply a
valuation of 𝜑 , is a mapping that instantiates 𝑡 in each 𝑅(𝑡) with a tuple in a relation 𝐷 of D.

We say that ℎ satisfies a predicate 𝑝 , written as ℎ |= 𝑝 , if the following are satisfied: (1) If 𝑝 is
a relation atom 𝑅(𝑡), 𝑡 ⊕ 𝑐 or 𝑡 .𝐴 ⊕ 𝑠 .𝐵, then ℎ |= 𝑝 is interpreted as in tuple relational calculus
following the standard semantics of first-order logic [6]. (2) If 𝑝 is M(𝑡 [𝐴], 𝑠 [𝐵]), then ℎ |= 𝑝 if M
predicts true on (ℎ(𝑡) [𝐴], ℎ(𝑠) [𝐵]).
Given a precondition 𝑋 , we say ℎ |= 𝑋 if for all predicates 𝑝 in 𝑋 , ℎ |= 𝑝 . Given an REE 𝜑 , we

write ℎ |= 𝜑 such that if ℎ |= 𝑋 , then ℎ |= 𝑝0. An instance D of R satisfies 𝜑 , denoted by D |= 𝜑 ,
if for all valuations ℎ of tuple variables of 𝜑 in D, ℎ |= 𝜑 . We say that D satisfies a set Σ of REEs,
denoted by D |= Σ, if for all 𝜑 ∈ Σ, D |= 𝜑 .

Example 3: Continuing with Example 2, assume that D has two relations 𝐷1 and 𝐷2 of schemas
Drug and Disease, shown in Tables 1 and 2, respectively. Consider valuation ℎ1: 𝑡5 ↦→ 𝑡𝑎 , 𝑡11 ↦→ 𝑠𝑎
and 𝑡12 ↦→ 𝑠𝑏 . This valuation satisfies𝜑1 and discovers a new drug “Ethanol ” for disease “Eczema”. 2

3 BI-CRITERIA RULE RANKING
In this section we study how to rank REEs. We first present the ranking criteria, including the
objective and subjective measures (Section 3.1). We then propose our bi-criteria model (Section 3.2).
Finally, we show how to learn the model (Section 3.3).

3.1 Ranking Measures
To find truly useful REEs for users, we consider (a) objective measures, which are based only on
the datasets and are “universal” to different users; and (b) subjective measures, which are based on
both the data and the users, including the users’ background, preference and needs, and may vary
for different users/applications.

3.1.1 Objective Measures. We start with objective measures.
Support. Support measures how frequently an REE can be applied. For collective rules across tables
such as REEs, the conventional notion of support has to be revised. To see this, we first define an
order on REEs. Given two REEs 𝜑 : 𝑋 → 𝑝0 and 𝜑 ′ : 𝑋 ′ → 𝑝0 with the same consequence 𝑝0, we say
that 𝜑 has a lower order than 𝜑 ′, denoted by 𝜑 ⪯ 𝜑 ′, if 𝑋 ⊆ 𝑋 ′. That is, 𝜑 is less restrictive than 𝜑 ′.
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Given a dataset D of schema R, conventionally support for REEs 𝜑 : 𝑋 → 𝑝0 over R is defined
as the number of distinct valuations ℎ of 𝜑 in D such that ℎ |= 𝑋 . This is the notion for rules on
a single relation, e.g., FDs, CFDs, etc. It satisfies the anti-monotonicity on single relations, i.e., if
𝜑 ⪯ 𝜑 ′, then the support of 𝜑 is at least that of 𝜑 ′. Unfortunately, for collective rules involving
multiple relations, this definition does not work, as shown by the example below.

Example 4: Let 𝑋 be Drug(𝑡𝑎) ∧ 𝑡𝑎 .name = “Phenformin” and 𝑝0 be 𝑡𝑎 .formula = “C10H15N5”.
Consider two REEs 𝜑 and 𝜑 ′, 𝜑 : 𝑋 → 𝑝0 and 𝜑 ′ : 𝑋 ′ → 𝑝0, where 𝑋 ′ = 𝑋 ∧Disease(𝑠𝑎) ∧ 𝑡𝑎 .cid =

𝑠𝑎 .cid. Clearly, 𝜑 ⪯ 𝜑 ′ since 𝑋 ⊂ 𝑋 ′. However, if conventional support is applied, the support of 𝜑
is 1 by 𝑡2 ↦→ 𝑡𝑎 , while the support of 𝜑 ′ is 2, since (𝑡2, 𝑡7) ↦→ (𝑡𝑎, 𝑠𝑎) and (𝑡2, 𝑡9) ↦→ (𝑡𝑎, 𝑠𝑎), violating
anti-monotonicity. Intuitively, this is because in collective rules, a tuple can join with multiple
tuples, yielding a larger “support”. 2

To fix this, we revise the notion of support and establish its anti-monotonicity. We assume
w.l.o.g. that predicates in this section involve two tuple variables, i.e., 𝑡 .𝐴 ⊕ 𝑠 .𝐵 orM(𝑡 [𝐴], 𝑠 [𝐵]);
all notations extend naturally to other cases, e.g., for predicates with one tuple variable.
We use the following notions. Given a predicate 𝑝 , we define an REE 𝜑𝑝 to verify whether two

tuples satisfy 𝑝 : 𝑅(𝑡) ∧ 𝑅′(𝑠) → 𝑝 , where 𝑡 and 𝑠 (of relation schema 𝑅 and 𝑅′, respectively) are the
tuple variables used in 𝑝 . Let 𝐻𝑝 be the set of valuations of 𝜑𝑝 in D. We define the support set of 𝑝
on D, denoted by spset(𝑝,D), as

spset(𝑝,D) = {⟨ℎ(𝑡), ℎ(𝑠)⟩ | ℎ ∈ 𝐻𝑝 ∧ ℎ |= 𝜑𝑝 },
i.e., the set of tuple pairs satisfying 𝑝 . Similarly, given a conjunction 𝑋 of predicates, we define the
support set of 𝑋 as follows:

spset(𝑋,D) = {⟨ℎ(𝑡), ℎ(𝑠)⟩ | ∀𝑝 ∈ 𝑋 (⟨ℎ(𝑡), ℎ(𝑠)⟩ ∈ spset(𝑝,D))},
i.e., the set of all tuple pairs satisfying all predicates in 𝑋 .

Given 𝜑 : 𝑋 → 𝑝0, assume that 𝐻 is the set of all valuations of 𝜑 in D, and 𝑡0 and 𝑠0 are the tuple
variables used in 𝑝0. Then the support set of 𝜑 , denoted by spset(𝜑,D), is defined as

spset(𝜑,D) = {⟨ℎ(𝑡0), ℎ(𝑠0)⟩ | ℎ ∈ 𝐻 ∧ ℎ |= 𝑋 ∧ ℎ |= 𝜑}.
To quantify the frequency of 𝜑 , we define the support of 𝜑 as

supp(𝜑,D) = |spset(𝜑,D)|.
Similarly we define the notions of supp(𝑝,D) and supp(𝑋,D).
For an integer 𝜎 , an REE is 𝜎-frequent on D if supp(𝜑,D) ≥ 𝜎 .

Theorem 1: For any instanceD of R and REEs 𝜑 and 𝜑 ′, if 𝜑 ⪯ 𝜑 ′, then spset(𝜑 ′,D) ⊆ spset(𝜑,D)
and supp(𝜑 ′,D) ≤ supp(𝜑,D). 2

Proof. There are two cases to consider: (1) 𝜑 and 𝜑 ′ use the same set of tuple variables. In this
case, spset(𝜑 ′,D) is clearly a subset of spset(𝜑,D), since the predicates that those tuple variables
have to satisfy in 𝜑 make a subset of those in 𝜑 ′, and hence more valuations can contribute to
the support of 𝜑 . (2) REE 𝜑 ′ uses more tuple variables than 𝜑 . By the definition of support, the
additional tuple variables used in 𝜑 ′ will not increase the support. Indeed, for each ⟨ℎ(𝑡0), ℎ(𝑠0)⟩
in spset(𝜑 ′,D), ⟨ℎ(𝑡0), ℎ(𝑠0)⟩ must also be in spset(𝜑,D), since otherwise ℎ cannot satisfy 𝜑 ′. In
both cases, spset(𝜑 ′,D) ⊆ spset(𝜑,D) and thus supp(𝜑 ′,D) ≤ supp(𝜑,D). 2

Example 5: In Example 4, 𝜑 ⪯ 𝜑 ′. By Theorem 1, supp(𝜑,D) ≥ supp(𝜑 ′,D), since spset(𝜑,D) =
spset(𝜑 ′,D) = {𝑡2 ↦→ 𝑡𝑎}. 2

Confidence. Confidence indicates how often an REE 𝜑 : 𝑋 → 𝑝0 has been found true, given
that its precondition 𝑋 is satisfied. For an REE 𝜑 : 𝑋 → 𝑝0, the confidence of 𝜑 on D, denoted by
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conf (𝜑,D), is defined to be conf (𝜑,D) = |spset(𝑋∧𝑝0,D) |
|spset(𝑋,D) | (which is a value from 0 to 1).

For a threshold 𝛿 , an REE is 𝛿-confident on D if conf (𝜑,D) ≥ 𝛿 . The use of confidence helps us
tolerate noise, such that useful rules could still be discovered from the noisy data.
We consider minimal REE 𝜑 on D that is (a) non-trivial: 𝑝0 ∉ 𝑋 , and (b) left-reduced: 𝜑 is 𝜎-

frequent and 𝛿-confident; moreover, there exists no 𝜎-frequent and 𝛿-confident 𝜑 ′ such that 𝜑 ′ ⪯ 𝜑 .
Besides support and confidence, we can also use attribute diversity and succinctness as objective

measures, shown in [3] for the lack of space. Other objective measures can also be plugged in.

3.1.2 Subjective Measures. Unlike “one-size-fit-all” objective measures, subjective measures could
be used to capture individual users’ needs or what a group of domain experts collectively think is
valuable to an application. Below we train an ML model Msub for catching subjective needs, to
compensate objective ones. Similar to the objective measures that have bounds, e.g., support and
confidence, we design our model with bounded output values; as will be seen shortly, the bounds
facilitate early termination in rule discovery.

Model architecture. As shown in Figure 1, we learn Msub by first transforming each rule into an
embedding, and then feeding it to a lightweight model, which outputs a scalar score, indicating the
subjective preference of users. The details are explained as follows.
Assumption. We assume that meta-data (e.g., schema and attribute names) are meaningful to a
pre-trained model e.g., ELMo [88] or Bert [26]. Otherwise, the performance ofMsub degrades since
these models may fail to give accurate embeddings to ad-hoc tokens.
Embedding. Given an REE 𝜑 : 𝑋 → 𝑝0, we create a rule embedding. We learn the embedding in a
hierarchical manner such that token embeddings, predicate embeddings and rule embeddings are
generated one after another, and finally the subjective score is computed.
(1) Firstly, we embed each predicate 𝑝 in 𝑋 by tokenizing its operator and operands into three
tokens, say 𝑇1,𝑇2, and 𝑇3, e.g., if 𝑝 is 𝑡 .𝐴 ⊕ 𝑐 , we tokenize it as 𝑡 .𝐴, ⊕ and 𝑐; similar for the other
types of predicates. We treat tokens as words and construct a vocabulary V . For each 𝑇𝑖 ∈ V ,
we use a pre-trained model, e.g., ELMo [88] or Bert [26], to transform 𝑇𝑖 to a vector T𝑖 ∈ R𝑑×1.
Then we adopt a linear layer wemb ∈ R3×1 to generate the embedding 𝐸𝑝 ∈ R𝑑×1 of 𝑝:

𝐸𝑝 = [T1;T2;T3]wemb,

where [; ] denotes concatenation; wemb is shared by all predicates.
(2) With the predicate embeddings for each 𝑝 in𝑋 , we compute the precondition embedding, denoted
by 𝐸𝑋 ∈ R𝑑𝑟×1 for 𝑋 . Recall that 𝑋 is a conjunction 𝑝1 ∧ · · · ∧ 𝑝 |𝑋 | of predicates. The embedding 𝐸𝑋
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should be permutation invariant, i.e., 𝐸𝑋 = 𝐸𝑋 ′ , where𝑋 ′ = 𝑝𝜋1 ∧· · ·∧𝑝𝜋 |𝑋 | , and 𝜋1, . . . , 𝜋 |𝑋 | is a new
permutation of 1, . . . , |𝑋 |. To achieve this, we adopt deep sets [121] based on the predicate embed-
dings, and obtain 𝐸𝑋 = 𝜌 (∑ |𝑋 |

𝑖=1 Φ(𝐸𝑝𝑖 )), where 𝜌 and Φ are two linear layers without activation func-
tions. Moreover, we use predicate embedding of 𝑝0 as the consequence embedding, denoted by 𝐸𝑝0 .

(3) Finally, precondition 𝐸𝑋 and consequence 𝐸𝑝0 are concatenated to form the rule embedding,
denoted by 𝐸𝜑 ∈ R(𝑑𝑟+𝑑)×1, as below:

𝐸𝜑 = [𝐸T𝑋 ;𝐸T𝑝0 ]
T. (1)

Lightweight model. Given embedding 𝐸𝜑 , our lightweight model is designed carefully, by employing
a fully-connected layer along with a learnable parameter UBsub and the ReLU activation function:

Msub (𝜑) = UBsub − ReLU(wT
light𝐸𝜑 + 𝑏light),

where wlight ∈ R(𝑑𝑟+𝑑)×1 and 𝑏light ∈ R are parameters of the lightweight model. By adopting
the ReLU activation function, UBsub can serve as a (loose) upper bound on the subjective score,
i.e.,Msub (𝜑) ≤ UBsub. Intuitively, this allows us to develop effective pruning strategies for early
termination in top-𝑘 rule discovery.

Example 6: Consider 𝜑3 in Example 2. We first tokenize its predicates, e.g., {Mnew, 𝑡𝑎, 𝑠𝑏} of 𝑝 =

Mnew (𝑡𝑎, 𝑠𝑏), and transform them into embeddings using, e.g., ELMo. The representation of 𝑝 is gen-
erated usingwemb. After all predicates are embedded, we compute the precondition and consequence
embeddings, and concatenate them to form 𝐸𝜑3 . The subjective score is computed via Msub. 2

Remark. Note that we do not adopt existing language models to acquire the rule-level represen-
tations for training Msub, for the following reasons: (1) REEs do not follow natural language
structure and thus, directly applying language model (e.g., Bert [26]) does not work well; and (2)
given 𝜑 : 𝑋 → 𝑝0, 𝑋 is a conjunction of predicates, but not a sequence of predicates as in text
for which there is no guarantee for the permutation invariant property.

3.2 Modeling User Preference
Putting these together, we define the ranking score of an REE𝜑 based on linear scoring functions, one
of the most proliferate representations of user preference since the inception of utility modeling [30,
58]; as shown in [89], it can achieve a good trade-off among multiple criteria. Let 𝐹 and𝐺 be the set
of objective measures and subjective measures, respectively. The ranking score of 𝜑 is defined to be

score(𝜑) =
∑︁
𝑓 ∈𝐹

𝑤 𝑓 𝑓 (𝜑) +
∑︁
𝑔∈𝐺

𝑤𝑔g(𝜑),

where 𝑤 𝑓 and 𝑤𝑔 are non-negative weights associated with the measures. Denote the complete
weight vector by wprefer, representing the user preference (i.e., the individual need of a user or
the application needs from a group of experts jointly). Intuitively, a larger weight indicates that
the corresponding measure is more important. Once wprefer is determined, we can compute the
ranking score of each rule, based on which we can deduce the top-𝑘 rules.

As will be seen shortly, the weight vector and subjective model are learned. Users may also manu-
ally adjustwprefer. Domain experts may want to find rules that fit the needs of their applications and
thus, assign a larger weight toMsub. A novice student can turn off the subjective features by setting
𝑤𝑔 = 0, and only use objective measures to find common rules as mined by conventional discovery
algorithms. Note that a user does not need to give exact ranking scores for rules. What she/he needs
to do is to conduct pairwise comparison on a few carefully selected rule pairs (see below), so that the
weight vector wprefer and subjective measure Msub are learned implicitly, based on which the rank-
ing of rules can be derived (see Exp-2 and the case study of Section 7 for how users may label rules).
As a real-life example, our drug-discovery users have accumulated quite a few rules for target
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identification [123], and the conventional notions of support and confidence may produce excessive
candidates, making it difficult to find useful rules. What they need is the subjective measure
(i.e.,𝐺); they set𝑤 𝑓 small and let𝑤𝑔 dominate inwprefer. The subjective measureMsub here suffices
for finding rules that fit their needs, since it is learned via a neural network that has enough
approximation power for users’ preference.

3.3 An Active Learning Approach
Denote our bi-criteria model byMbi, which is the combination of subjective measuresMsub, objec-
tive measures and wprefer. In other words, given an REE 𝜑 ,Mbi outputs the ranking score score(𝜑).
Intuitively, our design is inspired by the techniques from Learning to Rank [74]; we adopt a

pairwise ranking setting for users to label the partial orders of a few rules, since it is impractical
to ask the users to label the actual score score(𝜑) for each individual rule 𝜑 . We aim to learn Mbi
based on these partial orders of rules, so that Mbi can be used to rank both seen and unseen rules.
Below we show how to jointly train Mbi via the active learning strategy.

More specifically, we maintain a rule pool 𝑆REEs. Given a pair of rules ⟨𝜑𝑖 , 𝜑 𝑗 ⟩ in 𝑆REEs, a user may
label 1 on ⟨𝜑𝑖 , 𝜑 𝑗 ⟩ if she/he thinks that 𝜑𝑖 is ranked higher than 𝜑 𝑗 , denoted by 𝜑 𝑗 ≪ 𝜑𝑖 ; otherwise,
the user labels 0. We denote the label by 𝑦 (𝑖, 𝑗) ∈ {0, 1}. For each training instance ⟨𝜑𝑖 , 𝜑 𝑗 , 𝑦

(𝑖, 𝑗)⟩, we
adopt the Siamese neural network with shared parameters to separately compute the scores of 𝜑𝑖
and 𝜑 𝑗 . We use the Cross Entropy loss function to train Mbi as follows.

Pr(𝜑𝑖 ≪ 𝜑 𝑗 ) = Sigmoid(score(𝜑𝑖 ) − score(𝜑 𝑗 )),

LCE =
∑︁
𝑖, 𝑗

𝑦 (𝑖, 𝑗) log(Pr(𝜑𝑖 ≪ 𝜑 𝑗 )) + (1 − 𝑦 (𝑖, 𝑗) )log(1 − Pr(𝜑𝑖 ≪ 𝜑 𝑗 )) .

Active learning. It is impractical for users to label all of rule pairs ( 1
2 |𝑆REEs | × |𝑆REEs | in total). Thus

we adopt active learning, which selects high-quality pairs of rules for users to label. We iteratively
learnMbi and actively select rule pairs inSREEs thatMbi cannot distinguish well, i.e., pairs that have
the smallest differences in ranking scores, and ask users for labeling. To increase the diversity, we
also randomly select a few rule pairs from 𝑆REEs for users to label. The process proceeds until either
it reaches the maximum number of iterations or the accuracy ofMbi reaches a predefined bound in
a validation dataset. In the training step, we could simply combine different predicates and generate
as many rules as required for SREEs without worrying about the rule validity (see [3]). We find that
it often suffices for users to label 320 rule pairs in 5 rounds of interaction (160 in the first round).
After training, Mbi is used to rank valid rules in the discovery process, as will be seen in Section 4.

4 TOP-K RULE DISCOVERY
Based on the bi-criteria model, we discover top-ranked rules from a dataset D (Section 4.1), and
develop such an algorithm (Section 4.2).

4.1 Problem Statement
Denote by Σall the set of minimal REEs on D that are 𝜎-frequent and 𝛿-confident for thresholds 𝜎
and 𝛿 . As remarked earlier, Σall may contain an excessive number of rules that are not very relevant
to users’ needs. To reduce such rules, we learn a subset P0 of predicates for each consequence 𝑝0,
including all predicates correlated to 𝑝0; we focus on mining REEs 𝜑 : 𝑋 → 𝑝0 such that 𝑋 ⊆ P0.
We identify correlated attributes via graphical lasso [42] or LSTM [55].

Top-𝑘 REEs discovery. The top-𝑘 discovery problem is as follows.
◦ Input: A schema R, an instance D of R, the set Pall of all consequence predicates for discovery,
the support/confidence thresholds 𝜎/𝛿 , an integer 𝑘 , and the learned bi-criteria model Mbi for
computing the ranking scores.
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◦ Output: A set Σ of top-𝑘 REEs such that for each 𝜑 : 𝑋 → 𝑝0 in Σ, (a) 𝑝0 ∈ Pall; (b) 𝑋 ⊆ P0, P0
is a set of predicates correlated to 𝑝0; and (c) 𝜑 is minimal, 𝜎-frequent and 𝛿-confident.

We impose lower bounds 𝜎 and 𝛿 on support and confidence to ensure that the discovered rules
are valid and reliable, just like [87].

When the confidence threshold 𝛿 is set to 1, we focus discovery on exact rules (i.e., no violation
is allowed). However, in most settings, rules do not apply perfectly and thus, we set 𝛿 less than 1 to
mine approximate rules. This may increase the number of rules returned and the cost of selecting
desired rules. Nonetheless, with our bi-criteria model (esp. subjective measures), we can alleviate
this via top-𝑘 discovery to prioritize those rules that truly fit the needs.

Workflow. As shown in Figure 1, we first train the bi-criteria modelMbi via active learning by
interacting with the users using the rules in the pool SREEs. GivenMbi, we discover top-𝑘 rules and
next 𝑘 rules using algorithms Topk-Miner and Anytime-Miner, respectively, by adopting pruning
strategies for early termination. In particular, we employ an ML model UBSCORE, which takes
the learned Mbi as input and outputs an estimation of the upper bound of ranking scores, via
reinforcement learning, to be seen shortly.

4.2 A Top-𝑘 Discovery Algorithm
We start with pruning strategies to remove early those REEs that are unlikely to become top-𝑘 rules,
and reduce the large number of candidate rules to be examined in top-𝑘 rule discovery.
Pruning strategy. Our strategies are based on anti-monotonicity and the score upper bound and
thus, REEs with high orders [P1], low supports [P2] or low ranking scores [P3] are pruned early.

We maintain a heap Σ of top-𝑘 minimal REEs discovered so far. Denote the 𝑘-th highest ranking
score of rules in Σ by T𝑘 . Assume that we are checkingwhether anREE𝜑 : 𝑋 → 𝑝0 is one of the top-𝑘
rules; if not, we revise and expand 𝑋 with more predicates from P0 to make such an REE if possible.
[P1] Prune non-minimal REEs: Before we perform exact checking for 𝜑 , we first check whether
there exists an REE 𝜑 ′ discovered so far such that 𝜑 ′ ⪯ 𝜑 . If so, we can skip the processing and
expansion for 𝜑 , since 𝜑 and all of its subsequent expansions are not minimal.
[P2] Prune REEs with low support: If supp(𝜑,D) < 𝜎 , we do not consider any 𝜑 ′ such that 𝜑 ⪯ 𝜑 ′

since by Theorem 1, we have that supp(𝜑 ′,D) ≤ supp(𝜑,D) < 𝜎 and thus, 𝜑 ′ is not 𝜎-frequent.
[P3] Prune low-ranked REEs: We maintain T𝑘 , the 𝑘-th highest ranking score in Σ. We compute a
score upper bound UB for rules expanded from 𝜑 . If UB is less than T𝑘 , no rules expanded from 𝜑

can make a top-𝑘 rule and thus, we stop the exact expansion.
We compute UB by taking the minimum of (a) an exact bound that safely prunes low-ranked

REEs and (b) a learned bound via an ML model. We next show how to find exact and learned bounds.
(1) Exact bound.We categorize the ranking measures into three types: monotonic, anti-monotonic
and general measures: (a) A ranking measure ℎ (i.e., 𝑓 ∈ 𝐹 or 𝑔 ∈ 𝐺) is monotonic if ℎ(𝜑) ≤ ℎ(𝜑 ′)
as long as 𝜑 ⪯ 𝜑 ′, i.e., adding predicates to 𝜑 monotonically increases the score. Then the upper
bound (denoted by ℎub (𝜑 ′)) of ℎ(𝜑 ′) is ℎ(P0 → 𝑝0). (b) Adding predicates in an anti-monotonic
measure monotonically decreases the ranking score, e.g., support. Here the upper bound ℎub of
ℎ(𝜑 ′) is ℎ(𝜑) if 𝜑 ⪯ 𝜑 ′. (c) If a ranking measure does not have the above properties, it is referred
to as general, e.g., usually the subjective model, whose upper bound ℎub is UBsub. The exact upper
bound of score(𝜑) is the weighted sum of upper bounds ℎub of all measures (see [3] for details).

Example 7: Assume that 𝑘 = 3 and the 𝑘-th highest ranking score T𝑘 in Σ is 10 (see Figure 2), and
we are currently processing 𝜑 . If the exact bound of the REEs expanded from 𝜑 is found to be 8, we
stop the expansion of 𝜑 , since it will not yield any top-𝑘 rules. 2
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Fig. 2. A pictorial example of PTopk-Miner

(2) Learned bound of subjective measures. Recall that ℎub = UBsub for subjective measures, which
can be loose. Thus, we develop an ML model to learn a tighter bound, before the discovery process.
Given the model Msub and a candidate REE 𝜑 : 𝑋 → 𝑝0, we learn a function UBSCORE such

that UBSCORE(𝜑) ≈ max{Msub (𝜑 ′) | 𝜑 ′ : 𝑋 ∪ 𝑃 ′ → 𝑝0,∀𝑃 ′ ⊆ P0}. To learn UBSCORE, one may
want to compute the exact 𝜑 ′ expanded from 𝜑 , with the maximum subjective score Msub (𝜑 ′)
to get a training instance for UBSCORE (i.e., use Msub (𝜑 ′) as its label). Then one can learn
UBSCORE via a regression model (e.g., a feed-forward network FFN, which is commonly used
for predicting scalar values). However, computing the exact maximum subjective score Msub is
a combinatorial optimization problem with exponential enumeration cost.

As discussed in [60], a feasible way to tackle this issue is to learn a robust policy that heuristically
constructs the training instances for UBSCORE in the reinforcement learning (RL) manner. Deep
Q-learning (DQN) [81] is such an effective RL model for discrete action space and thus, we use
DQN [81] to generate training instances of UBSCORE. Specifically, it takes the currently selected
predicates Psel as state 𝑠 , and the predicate 𝑝 to be added as action 𝑎. In each step, the agent interacts
with the environment, i.e.,Msub, to compute a reward 𝑟 = Msub (Psel ∪ {𝑝} → 𝑝0) −Msub (Psel →
𝑝0). We add a special action END to terminate the expansion of Psel, and also stop it if its length
reaches a predefined constant. DQN contains two networks: a Q-network and a target network.
The Q-network takes a state 𝑠 and an action 𝑎 as input, and outputs the reward of taking 𝑎. It is
learned and updated in each step from 𝑠 to 𝑠 ′, where 𝑠 ′ = Psel ∪ {𝑝}. The Q value is computed as

𝑄 (𝑠 ′, 𝑝 ′) = E𝑠∼Msub [𝑟 + 𝛾max𝑝𝑄 (𝑠, 𝑝) |𝑠 ′, 𝑝 ′], (2)

where𝛾 is a discount ratio. The Q value is approximated by the Q-network, and the target network is
obtained by cloning Q-network in a few steps. We denote the state 𝑠 (i.e., Psel) as a |P0 |-dimensional
bit vector v𝑠 , where v𝑠 [𝑝] = 1 if 𝑝 ∈ Psel, and v𝑠 [𝑝] = 0 otherwise. We implement the Q-network
as a feed-forward network and output a (|P0 | + 1)-dimensional vector v𝑜 of |P0 | + 1 rewards, such
that v𝑜 [𝑝] is the reward of adding 𝑝 or terminating the expansion if 𝑝 is END. The learning method
and loss function are the same as DQN. We adopt the Double strategies [53] to speed up training.

After learning DQN, we generate 𝑁 REEs as training instances for UBSCORE. We use the policy
learned from DQN to obtain the subjective upper bounds as labels, by iteratively expanding Psel
with predicates of maximum rewards using DQN, until the termination condition is satisfied. When
training instances are ready, we train UBSCORE to predict the upper bound of subjective measures.

Note that the training (including training DQN, label generation and training UBSCORE) does
not dominate the complexity since (1) computing rewards in DQN is fast in O(|Msub |) time; (2)
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Algorithm Topk-Miner
Input: R, D, Pall, 𝑘 , 𝜎 , 𝛿 andMbi.
Output: A heap Σ of top-𝑘 REEs such that for each 𝜑 : 𝑋 → 𝑝0 in Σ,

(1) 𝑝0 ∈ Pall; (2) 𝑋 ⊆ P0, where P0 is a set of predicates correlated to 𝑝0.
1. Σ := an empty max-heap of maximum size 𝑘 , ordered by ranking scores;
2. Build auxiliary structures, e.g., position list indexes (PLI) [87];
3. for each 𝑝0 ∈ Pall do
4. Psel := ∅; Pre := P0;
5. Σ := Expand(D,Psel,Pre, 𝑝0, 𝑘, 𝛿, 𝜎,Mbi, Σ);
6. return Σ;

Procedure Expand
Input: D, Psel,Pre, 𝑝0, 𝑘, 𝛿, 𝜎 ,Mbi and the current heap Σ of REEs.
Output: An updated heap Σ of REEs.
7. Q := an empty queue; Q .add(⟨Psel,Pre⟩);
8. while Q ≠ ∅ do
9. ⟨Psel,Pre⟩ := Q .pop();
10. 𝜑 := Psel → 𝑝0; T𝑘 := the 𝑘-th highest ranking score in Σ;
11. if 𝜑 is minimal (and thus, it is 𝜎-frequent and 𝛿-confident) then
12. if score(𝜑) > T𝑘 then
13. Update Σ using 𝜑 ;
14. continue;
15. UB := min (exact bound, UBSCORE bound) of rules expanded from 𝜑 ;
16. if ∃𝜑 ′ ∈ Σ s.t. 𝜑 ′ ⪯ 𝜑 [P1] or supp(𝜑) < 𝜎 [P2] or UB < T𝑘 [P3]
17. continue; // Early termination of the current expansion
18. for each 𝑝 ∈ Pre do // Add predicates from Pre to Psel
19. Q .add(⟨Psel ∪ {𝑝},Pre \ {𝑝}⟩)
20. return Σ;

Fig. 3. Algorithm Topk-Miner

DQN andUBSCORE are implemented as FFNswith a few hidden layers; and (3) both of the training
episode in DQN and 𝑁 are constants.

Example 8: Assume that we are expanding an REE 𝜑 : 𝑋 → 𝑝0 with more predicates in P0 where
|P0 | = 100. Let 𝜑∗ : 𝑋 ∧ 𝑃∗ → 𝑝0 be the rule expanded from 𝜑 (i.e., 𝑃∗ ⊆ P0), with the maximum
subjective score, i.e., Msub (𝜑∗) = max∀𝑃 ′⊆P0 {Msub (𝜑 ′) | 𝜑 ′ : 𝑋 ∪ 𝑃 ′ → 𝑝0}. Ideally, we want
UBSCORE(𝜑) ≈ Msub (𝜑∗). Compared with a brute-force method which checks 𝑂 (2100) subsets
to identify 𝑃∗ from P0, if a robust heuristic policy is learned from DQN, 𝑃∗ can be easily found,
by iteratively selecting predicates from P0 with maximum rewards. After 𝑃∗ is known, we can
compute Msub (𝜑∗) and get a training instance (𝜑,Msub (𝜑∗)) for UBSCORE. 2

Remark. DQN is a general method for optimization and could be used in other rule mining algo-
rithms, under the assumption that its interaction with environment is cheap. Intuitively, since DQN
has to interact with the environment frequently for reward computation, its performance degrades
if the interaction is costly. Nevertheless, in our setting,DQN only interacts withMsub, and it is fast.

Algorithm.We now present our algorithm, referred to as Topk-Miner, for top-𝑘 REEs discovery
on the given dataset D.
As shown in Figure 3, Topk-Miner is a levelwise search algorithm. It first initializes a max-heap

Σ of maximum size 𝑘 (line 1), which is used to store the top-𝑘 REEs discovered so far, ordered by
their ranking scores. Given a consequence 𝑝0 and its correlated P0, we maintain two predicate
sets for discovering new REEs 𝜑 : 𝑋 → 𝑝0 with 𝑋 ⊆ P0: (1) Psel, the set of predicates selected to
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constitute 𝑋 ; and (2) Pre, the set of remaining predicates in P0. Initially, Psel is empty and Pre is
P0 (line 4). Topk-Miner then traverses the search space level by level by maintaining a queue Q
(line 7), where at the 𝑖-th level, it discovers 𝜑 : 𝑋 → 𝑝0 with |𝑋 | = 𝑖 . It iteratively adds predicates
from Pre to Psel (line 18-19) until either (1) Pre is exhaustive; or (2) 𝜑 : Psel → 𝑝0 is a minimal
REE (line 10-14), since in this case, adding predicates will not make supp(𝜑,D) larger, while it
increases the order of 𝜑 . We maintain the 𝑘-th highest ranking score T𝑘 of REEs in Σ (line 10). If
score(𝜑) > T𝑘 , Σ is updated (line 12-13) by adding 𝜑 into Σ and removing the REE with the smallest
score from Σ if there are more than 𝑘 REEs in Σ. If 𝜑 : Psel → 𝑝0 is still not a minimal REE, we
expand it (line 18-19); before expansion, we apply the pruning strategies [P1]-[P3] (line 15-17), to
check whether we can terminate early.

Topk-Miner adopts several optimization strategies. (a) When multiple 𝑝0 in Pall share similar
correlated predicates P0, it processes these 𝑝0 together (not shown). (b) It pre-computes auxiliary
structures (line 2), e.g., position list indexes (PLI) [87], to compute supports and confidences.

We also develop the following strategies for top-𝑘 REEs discovery.
Correlated predicate learning. Recall that for each consequence 𝑝0, we learn a subset P0 of its corre-
lated logic predicates and ML predicates. To this end, we maintain a pool of pre-trained ML models.
Given a schema R, we associate attributes in R to compatible models in the pool and initialize
the ML predicates. Then, to learn correlated P0, we apply graphical lasso [42, 124] to learn how an
attribute is affected by others. Informally, given a predicate 𝑝 , either a logic or an ML predicate, if
attributes in 𝑝 have strong impact on the attributes in 𝑝0, 𝑝 is correlated to 𝑝0 and is included in P0.
Handling multiple relation atoms. To efficiently support multiple relation atoms in Topk-Miner, we
incrementally discover multi-variableREEs in rounds at each level (not shown). In the 𝑗-th round, we
discover 𝑗-variable REEs by processing each non-minimal ( 𝑗−1)-variable REE𝜑 found in the ( 𝑗−1)-
th round, by constructing the set Pre of remaining predicates that can be used to expand 𝜑 , such that
the expanded rules contain exactly 𝑗 relation atoms. Here Pre is built incrementally by enumerating
the predicates that contain one new relation atom and at most one existing relation atom used in 𝜑 .
Then we discover 𝑗-variable rules by expanding 𝜑 with the predicates in the newly constructed Pre.
Early termination. Topk-Miner terminates the expansion of an REE 𝜑 if one of the following
happens (line 13): (1) if there exists an REE 𝜑 ′ in Σ such that 𝜑 ′ ⪯ 𝜑 , then there is no need to
expand 𝜑 , which cannot be minimal [P1]; (2) if supp(𝜑) ≤ 𝜎 [P2], then further expanding 𝜑

will not lead to 𝜎-frequent REEs by the anti-monotonicity of support; and (3) if UB < T𝑘 [P3],
where UB = min{exact bound, learned UBSCORE bound} is the score upper bound of the rules
expanded from 𝜑 , then no rule expanded from 𝜑 has a higher score than those already in Σ; we
can stop the expansion of 𝜑 immediately.

We further optimize Topk-Miner by considering two effective processing orders for Pre (line 18).
(1) Support-based processing order. The first order is to add the predicates 𝑝 from Pre to Psel based
on supp(Psel ∧ 𝑝,D), such that predicates with high supports are processed first. This helps us
prune those predicates in Pre that are useless in generating 𝜎-frequent REEs (in addition to [P2]).
Intuitively, if including a predicate 𝑝 with high support cannot lead to an 𝜎-frequent REE, it is
even more difficult for a predicate 𝑝 ′ with low support to do so. In light of this, if Pre is ordered by
support, every time we see a predicate 𝑝 and if Psel ∧ 𝑝 → 𝑝0 is not 𝜎-frequent, we can prune all 𝑝 ′

in Pre ordered after 𝑝 with spset(𝑝 ′,D) ⊆ spset(𝑝,D) (see [3] for a proof).
Lemma 2: Given an REE 𝜑 : Psel → 𝑝0, and predicates 𝑝 and 𝑝 ′ in Pre, expanding Psel with 𝑝 ′ will
not give any 𝜎-frequent REE if Psel ∧ 𝑝 → 𝑝0 is not 𝜎-frequent and spset(𝑝 ′,D) ⊆ spset(𝑝,D). 2
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Example 9: Consider the relations in Table 1. Assume that Psel = {Drug(𝑡)} and 𝑝0 is 𝑡 .weight ≠
0. Let 𝑝 and 𝑝 ′ be 𝑡 .formula = “C10H15N5” and 𝑡 .name = “Phenformin”, respectively. Clearly,
spset(𝑝 ′,D) = {𝑡2 ↦→ 𝑡} is a subset of spset(𝑝,D) = {𝑡2 ↦→ 𝑡, 𝑡4 ↦→ 𝑡} and thus, 𝑝 is processed
before 𝑝 ′. If we find that Psel ∧ 𝑝 → 𝑝0 is not 𝜎-frequent, there is no need to process 𝑝 ′, since
supp(Psel ∧ 𝑝 → 𝑝0) = 2 > 1 = supp(Psel ∧ 𝑝 ′ → 𝑝0). 2

(2) Score-based order.We can also process the predicates in Pre based on their “potential” in mining
rules with high ranking scores. Intuitively, if more rules with high scores are found, the score
bound T𝑘 (i.e., the 𝑘-th highest one observed so far) is tighter and thus, more rules are likely to be
pruned by [P3] at an earlier stage.
More specifically, given REE 𝜑 : Psel → 𝑝0 and a predicate 𝑝 in Pre, we define an indicator Δ𝑝 ,

expressing the best possible ranking score that can be achieved by including 𝑝 to Psel:

Δ𝑝 =
∑︁
𝑓 ∈𝐹

𝑤 𝑓 𝑓ub (𝜑 ′) +
∑︁
𝑔∈𝐺

𝑤𝑔min
{
gub (𝜑 ′),UBSCORE(𝜑 ′)

}
,

where 𝜑 ′ is Psel ∧ 𝑝 → 𝑝0, and 𝑓ub, 𝑔ub are exact bounds. Then, the predicate 𝑝 in Pre with the
maximum Δ𝑝 is selected as the next predicate to be used to expand Psel.
Remark. The support/score based processing orders can be combined, e.g., sort by supports first
and break ties by score indicators.

Example 10: We show how 𝜑1 in Example 2 is found (see Figure 2 for a pictorial illustration).
Assume that 𝑘 = 3, Σ = {𝜑𝑎, 𝜑𝑏, 𝜑𝑐 } with the 𝑘-th highest ranking score in Σ (i.e., T𝑘 ) to be 10, Psel =

{Drug(𝑡𝑎),Disease(𝑠𝑎),Disease(𝑠𝑏)}, 𝑝0 is 𝑡𝑎 .cid = 𝑠𝑏 .cid, and Pre = {𝑡𝑎 .cid = 𝑠𝑎 .cid,Mtherapy (𝑠𝑎,
𝑠𝑏)}. We want to expand Psel by adding predicates in Pre, by the support-based processing order.

Before we perform the exact expansion, we first compute the upper bound, say UB. If UB < T𝑘 ,
we terminate early since expandingPsel will not give any top-𝑘 REEs [P3]. Assume thatUB is 14 and
thus, T𝑘 < UB. Then 𝑡𝑎 .cid = 𝑠𝑎 .cid, which has a larger supp(Psel ∧ 𝑝), is added to the precondition
Psel first, followed by the insertion of Mtherapy (𝑠𝑎, 𝑠𝑏), until we find that the resulting REE, say 𝜑1,
is a minimal REE. If 𝜑1 has a higher score than some rules in Σ, Σ is updated accordingly, e.g., in
Figure 2, score(𝜑1) = 13 ≥ T𝑘 and thus, Σ is updated by inserting𝜑1, resulting in a tighter T𝑘 = 12. 2

Complexity. Topk-Miner takes O(∑𝜑 ∈C(P0)×Pall
|D| |𝜑 |) time at worst, where C(P0) is the power

set of P0 and |𝜑 | is the number of predicates in 𝜑 , since Topk-Miner examines the entire C(P0) for
each 𝑝0 ∈ Pall at worst. We will parallelize Topk-Miner in Section 6.

5 ANYTIME DISCOVERY
We convert Topk-Miner into an anytime algorithm Anytime-Miner, such that we can get next top-𝑘
rules if needed, via lazy evaluation.

A brute-force approach for supporting this is to compute the full ranking of all REEs first. Every
time a user wants the next top-𝑘 results, we retrieve the corresponding results from the ranked list.
Clearly, this method is inefficient. Users are typically only interested in the first few top-ranked
results, and should not pay the cost of waiting for discovering the entire set of REEs on a dataset.
Denote by Σ (see Figure 3) the heap of top-𝑘 REEs discovered so far. We expand Σ to lazily

discover the next top-𝑘 results as follows.
(1) Instead of just the top-𝑘 rules, all minimal rules discovered are kept in Σ, referred to as complete
rules. In addition, we maintain partial rules in Σ, where an REE 𝜑 is partial if at the time it is
processed, its score upper bound is lower than at least 𝑘 complete rules in Σ. In other words, [P3]
in original Topk-Miner is revised: instead of directly dropping those rules with relatively low
scores, we keep them as partial rules in Σ. Intuitively, these partial rules are likely to be expanded
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and contribute to the top-𝑘 ones in later rounds. For partial rules, their remaining predicates, say
Pre, are also stored for later expansion, and we use its score upper bound as the key in Σ.
(2) We only return the next top-𝑘 complete rules in Σ. For each partial rule whose score upper bound
is among the next top-𝑘 , we resume its levelwise search in order. Since we have stored the remaining
predicates Pre for each partial rule, the resumption is straightforward. The resumed search updates
the rules maintained in Σ; it continues until the next top-𝑘 rules in Σ all become complete.
(3) We ensure that the next top-𝑘 results are not “redundant”, i.e., not logical consequences of
the rules that have been shown before. Thus, we apply the implication analysis [37] on each
newly discovered rules. Formally, we say that a set of REEs Σ entails another REE 𝜑 over R,
denoted by Σ |= 𝜑 , if for any instance D of R, if D |= Σ then D |= 𝜑 . Then, every time a complete
rule 𝜑 is discovered, we add it to the heap Σ only if Σ ̸ |= 𝜑 . While the implication problem is
Π
𝑝

2 -complete [38], we develop an efficient heuristic for checking, i.e., an REE 𝜑 : 𝑋 → 𝑝0 will not
be added to Σ if there exists a set 𝑋 ′ of predicates such that (1) 𝜑 ′ : 𝑋 ′ → 𝑝0 is in Σ and (2) for
each predicate 𝑝 in 𝑋 ′, 𝑋 → 𝑝 is also in Σ; intuitively, it means that 𝑝0 can be “deduced” by some
REEs that are already known and thus, is redundant.

Example 11: Assume that 𝑘 = 3 and rules in Σ are currently stored in order: 𝜑𝑐
1, 𝜑

𝑝

2 , 𝜑
𝑝

3 , 𝜑
𝑐
4 , where

𝜑𝑐
𝑖 and 𝜑

𝑝

𝑗
denote complete rules and partial rules, respectively. Since there are partial rules in

top-3 of Σ, we process them in order. Assume that we first resume the levelwise search for 𝜑𝑝

2
and obtain three new REEs: 𝜑𝑐

5, 𝜑
𝑐
6, 𝜑

𝑝

7 , and Σ is updated as: 𝜑𝑐
1, 𝜑

𝑐
5, 𝜑

𝑐
6, 𝜑

𝑝

7 , 𝜑
𝑝

3 , 𝜑
𝑐
4 . At this point, all

top-3 rules in Σ (𝜑𝑐
1, 𝜑

𝑐
5, 𝜑

𝑐
6) are complete rules, and they are returned to the user. 2

6 PARALLEL TOP-𝑘 RULE DISCOVERY
In this section we parallelize top-𝑘 discovery to scale with large datasets. We first review a criterion
for measuring the effectiveness of parallel algorithms (Section 6.1). We then parallelize Topk-
Miner, denoted by PTopk-Miner, with the performance guarantees (Section 6.2); Anytime-Miner is
parallelized along the same lines.

6.1 Parallel Scalability
We revisit the widely adopted notion of parallel scalability [64].

Assume that A is a sequential algorithm which, given a dataset D, a consequence set Pall and
thresholds 𝜎 and 𝛿 for support and confidence, respectively, computes a set Σ of top-𝑘 REEs on D.
Denote its worst running time as 𝑡 ( |D|, |Pall |, 𝜎, 𝛿). We say that a parallel algorithmA𝑝 is parallelly
scalable relative to A if its running time by using 𝑛 processors can be expressed as:

𝑇 ( |D|, |Pall |, 𝜎, 𝛿) = Õ( 𝑡 ( |D|, |Pall |, 𝜎, 𝛿)
𝑛

),
where the notation Õ() hides log(𝑛) factors.

Intuitively, parallel scalability guarantees “linear” speedup of A𝑝 relative to the “yardstick”
algorithm A. That is, the more processors are used, the faster A𝑝 is. Hence A𝑝 can scale with
large databases by adding processors and makes REEs discovery feasible in practice.

6.2 Parallel Algorithm
We next parallelize Topk-Miner and develop PTopk-Miner (Figure 4). PTopk-Miner runs with one
coordinator 𝑆𝑐 and 𝑛 workers 𝑃1, . . . , 𝑃𝑛 under the Bulk Synchronous Parallel (BSP) model [112],
where the coordinator is responsible for distributing and balancing workloads, and workers discover
rules in parallel. The overall computation is divided into supersteps of a fixed duration.

Overview. Same as Topk-Miner, the coordinator maintains a max-heap of maximum size 𝑘 , con-
sisting of the top-ranked REEs discovered so far (line 1). Denote the heap at superstep 𝑖 by Σ𝑖 , and
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the 𝑘-th highest ranking score in Σ𝑖 by T𝑖𝑘 . The coordinator first distributes the workloads evenly to
all workers (see below; line 2-5). Then, each worker parallelly processes its workload and discovers
rules in supersteps (line 6-15). At each superstep, the coordinator informs each worker the latest
score bound T𝑖

𝑘
(line 10), based on which each worker performs the subsequent discovery (line 11)

by applying the pruning strategies in Section 4.2. The coordinator 𝑆𝑐 pulls the newly discovered
top-𝑘 rules from each worker at the end of each superstep (line 12). In addition, it adjusts and
balances the workload when needed (line 13-14; see below). Moreover, 𝑆𝑐 extends the heap Σ𝑖 to
Σ𝑖+1 with the new rules, and updates score bound T𝑖

𝑘
to T𝑖+1

𝑘
(line 15). The process continues until

all workers finish, i.e., when no rules with scores above the bound can be found.
Workload assignment. Given Pall, 𝑆𝑐 evenly divides it into 𝑛 partitions, namely RHS1, . . . ,RHS𝑛 ,
and constructs a set of work units based on each RHS𝑗 ( 𝑗 ∈ [1, 𝑛]) for the 𝑗-th worker 𝑃 𝑗 as follows.

For each consequence 𝑝0 in RHS𝑗 , it constructs a work unit, which is a triple𝑤 = ⟨Psel,Pre, 𝑝0⟩,
where Psel denotes the set of predicates that are selected to constitute the rules, and Pre denotes
the set of remaining predicates. Initially, Psel is empty and Pre is P0, which is the set of predicates
correlated to 𝑝0. Then, it sends workload W𝑗 = {𝑤 = ⟨Psel,Pre, 𝑝0⟩ | 𝑝0 ∈ RHS𝑗 } to worker 𝑃 𝑗 .
Upon receiving W𝑗 , worker 𝑃 𝑗 fetches a subset DW𝑗

of data from D, guided by W𝑗 , where
DW𝑗

= {𝑡 ∈ D | ∃𝑠 ∈ D, 𝑝 ∈ P0 s.t. ℎ⟨𝑡, 𝑠⟩ |= 𝑝 or ℎ⟨𝑡, 𝑠⟩ |= 𝑝0, where 𝑝0 ∈ RHS𝑗 }; it also
constructs the corresponding auxiliary structures for performing rule discovery. In this way, the
same data will be merged and transmitted to 𝑃 𝑗 only once even if it satisfies multiple predicates,
reducing the total communication cost when processing multiple predicates.

Example 12: Consider Drug in Table 1. Let 𝑝 be 𝑡 .type = 𝑠 .type and 𝑝 ′ be 𝑡 .formula = 𝑠 .formula.
Assume that coordinator 𝑆𝑐 assigns workloadW𝑗 = {𝑤,𝑤 ′} to worker 𝑃 𝑗 , where𝑤 = ⟨∅, {𝑝}, 𝑝0⟩
and𝑤 ′ = ⟨∅, {𝑝 ′}, 𝑝 ′

0⟩. It is easy to see DW𝑗
= {𝑡2, 𝑡3, 𝑡4}. In particular, although ℎ⟨𝑡4, 𝑡3⟩ |= 𝑝 and

ℎ⟨𝑡4, 𝑡2⟩ |= 𝑝 ′, 𝑡4 is transmitted once. 2

Workload balancing. At each superstep, if the workloads across workers are “skewed”, i.e., there is
an idle worker 𝑃𝑥 that has finished its assigned works, we re-distribute the workload to 𝑃𝑥 from
the heaviest worker 𝑃 𝑗 , in the following two steps.
(1) If there are more than one work unit in W𝑗 , 𝑃 𝑗 sends half of W𝑗 (and the corresponding

auxiliary structures) to 𝑃𝑥 .
(2) If there is only one remaining work unit 𝑤 = ⟨Psel,Pre, 𝑝0⟩ in W𝑗 , we split this heavy unit

into two smaller ones, namely 𝑤 ′ = ⟨Psel ∪ {𝑝},Pre \ {𝑝}, 𝑝0⟩ and 𝑤 ′′ = ⟨Psel,Pre \ {𝑝}, 𝑝0⟩,
where 𝑝 is the predicate in Pre with the highest processing order (see the processing order in
Section 4.2), and send one of the two to 𝑃𝑥 . Intuitively, it means that we divide the work unit𝑤
into two, i.e., selecting 𝑝 into Psel and excluding 𝑝 from Psel.

Parallel scalability. Below is the parallel scalability.

Theorem 3: PTopk-Miner is parallelly scalable relative to the sequential algorithm Topk-Miner. 2

Proof. Recall the complexity of Topk-Miner is 𝑡 ( |D|, |Pall |, 𝜎, 𝛿) = O(∑𝜑 ∈C(P0)×Pall
|D| |𝜑 |). We

next show that the parallel runtime of PTopk-Miner is in O( 𝑡 ( |D |, |Pall |,𝜎,𝛿)
𝑛

). In PTopk-Miner, 𝑆𝑐
conducts workload assignment and maintains the global top-𝑘 by collecting REEs from each worker.
The former takes O(|Pall |) time, while the latter takes O(𝑛𝑘log(𝑘)) time using merge-sort. Both
are smaller than the discovery cost, which dominates the complexity.
The cost at each worker is dominated by the following: (a) transmit its top-𝑘 rules to the

coordinator in time much less than O(|D|) since each rule is discovered from D and 𝑘 is a small
number; (b) receive T𝑘 from 𝑆𝑐 in O(1) time; (c) balance its workload, where O(|D|) data is sent
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Algorithm PTopk-Miner
Input: R, D, Pall, 𝑘 , 𝜎 , 𝛿 ,Mbi, a coordinator 𝑆𝑐 and 𝑛 workers 𝑃1, . . . , 𝑃𝑛 .
Output: A max-heap Σ of top-𝑘 REEs on D.
/* executed at coordinator 𝑆𝑐 */
1. 𝑖 := 0; Σ𝑖 := an empty max-heap of maximum size 𝑘 ;
2. for each 𝑝0 ∈ Pall do
3. Construct a work unit𝑤 = ⟨Psel,Pre, 𝑝0⟩, where Psel = ∅ and Pre = P0;
4. Evenly divide Pall into 𝑛 partitions, namely RHS1, . . . ,RHS𝑛 ;
5. Assign workload W𝑗 = {𝑤 = ⟨Psel,Pre, 𝑝0⟩ | 𝑝0 ∈ RHS𝑗 } to worker 𝑃 𝑗 ;
/* run on 𝑛 workers in parallel, in supersteps */
6. for each worker 𝑃 𝑗 do
7. Fetch DW𝑗

= {𝑡 ∈ D | ∃𝑠 ∈ D, 𝑝 ∈ P0 s.t. ℎ⟨𝑡, 𝑠⟩ |= 𝑝 or ℎ⟨𝑡, 𝑠⟩ |= 𝑝0,
where 𝑝0 ∈ RHS𝑗 } and build the corresponding auxiliary structures;

8. while there exists unfinished work do /* superstep 𝑖 */
9. for each 𝑃 𝑗 with non-empty workloadW𝑗 do
10. T𝑖

𝑘
:= the 𝑘-th highest ranking score in Σ𝑖 (informed by 𝑆𝑐 );

11. Run Topk-Miner at 𝑃 𝑗 based on W𝑗 and DW𝑗
in parallel;

12. 𝑆𝑐 pulls top-𝑘 REEs 𝜑 newly discovered (score(𝜑) > T𝑖
𝑘
);

13. for each 𝑃𝑥 that has finished the assigned workload do
14. Balance workload between 𝑃𝑥 and the heaviest worker 𝑃 𝑗 ;
15. Upon receiving new REEs from workers, 𝑆𝑐 updates Σ𝑖 to Σ𝑖+1,

updates T𝑖
𝑘
to T𝑖+1

𝑘
and broadcasts T𝑖+1

𝑘
to all workers; 𝑖 := 𝑖 + 1;

16. return Σ𝑖 ;

Fig. 4. Algorithm PTopk-Miner

to idle workers; and (d) locally perform discovery in O( 𝑡 ( |D |, |Pall |,𝜎,𝛿)
𝑛

) time, since the workload is
evenly distributed by (c). Taken together, the parallel cost of PTopk-Miner is O( 𝑡 ( |D |, |Pall |,𝜎,𝛿)

𝑛
) in the

worst-case. In practice, the pruning strategies in Section 4.2 effectively remove useless candidates.2

7 EXPERIMENTAL STUDY
Using real-life and synthetic data, we evaluated (1) the scalability of PTopk-Miner for top-𝑘 discovery
and Anytime-Miner for anytime discovery, (2) the effectiveness of the bi-criteria model, (3) the
accuracy of top-𝑘 discovery, and (4) the effectiveness of PTopk-Miner.
Experimental setting. We start with the experimental setting [4].
Datasets. Following the setting in studies [76, 87], we used eight datasets, shown in Table 6. Adult,
Airport, Hospital, DrugDisease, Inspection, and NCVoter are real-life datasets commonly used in
the literature. We additionally used an academic dataset DBLP that has multiple relations, and a
synthetic dataset Tax that is obtained by first duplicating tuples of the original tax data (1M) [15, 23]
10 times and then modifying their attributes using a program of [33].
ML models. We used three ML predicates in REEs: (a) the original SentenceBert [95] for checking
semantic similarity between textual attributes where traditional logic predicates do not work well
(e.g., title and author in DBLP); (b) default ditto [70] for ER, where we generated training data
following [110] and fine-tuned/trained it with 100 epochs; (c) a Bert-based model for assessing
DDA (drug-disease association) in DrugDisease with labeled data [25].
To decide the best thresholds for ML models, we used the grid search strategy in the range [0,

1] with a step 0.05 [70] to evaluate model accuracy on validation data (10% of data), and select
the one with maximum value. For the ease of presentation, we only report the threshold test for 3
models: (a) ditto for relation Author of DBLP, (b) SentenceBert for attribute name of Author, and

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 70. Publication date: May 2023.



Discovering Top-k Rules using Subjective and Objective Criteria 70:19

0 0.15 0.3 0.45 0.6 0.75 0.9

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

Bert(DDA)
SentenceBert(Author[name])
Ditto(Author)

Fig. 5. Test ML thresholds

Name Type #tuples #attributes #relations
Adult [63, 76, 87] real-life 32,561 15 1
Airport [76, 87] real-life 55,113 18 1

Hospital [15, 23, 76, 87] real-life 114,919 15 1
DrugDisease [25] real-life 466,658 35 4

Inspection [76, 87, 96] real-life 170,000 19 1
NCVoter [63, 76, 87] real-life 1,681,617 12 1

DBLP [109] real-life 1,799,559 18 3
Tax [15, 23, 33, 76, 87] synthetic 10,000,000 15 1

Fig. 6. Dataset statistic

Rule supp conf

𝜑𝑥 Hospital(𝑡0) ∧ Hospital(𝑡1) ∧ 𝑡0 .type = “Critical Access Hosplitals” ∧𝑡0 .owner = “Proprietary” ∧𝑡1 .state =
“TX” ∧𝑡0 .sample = 𝑡1 .sample ∧ 𝑡0 .stat_avg = 𝑡1 .stat_avg → 𝑡0 .emergency_service = “No”

1749 1.0

𝜑𝑦 Hospital(𝑡0) ∧ Hospital(𝑡1) ∧ 𝑡1 .owner = “Government Local” ∧𝑡0 .state =
𝑡1 .state ∧ 𝑡0 .country = 𝑡1 .country ∧ 𝑡0 .sample = 𝑡1 .sample → 𝑡0 .zip = 𝑡1 .zip

8038 0.938

Table 3. A sample rule pair for comparison

(c) Bert for DDA in Figure 5; other models are similar. Take SentenceBert for author names as
an example. As the threshold 𝛿 increases, the accuracy gets larger and then reaches the peak at
𝛿 = 0.45. Thus we set 0.45 as the threshold for this SentenceBert; similarly for other models.

For our bi-criteria model Mbi, we used the DistilBert [100] to initialize token embeddings
and set the size of rule embeddings to 100. Token embeddings are also learned together during
training. For UBSCORE, we adopted FFN with three 200-dimensional hidden layers. We used
Adam optimizer to train Mbi (resp. UBSCORE) with a batch-size of 128 (resp. 64), and the learning
rate is 10−3 (resp. 10−4). We adopted 300 epochs on Tesla V100 GPU. The inferences of Mbi and
UBSCORE are re-implemented using the EJML library [2].
Baselines. We implemented the following for top-𝑘 discovery, all in Java: (1) PTopk-Miner. (2)
Anytime-Miner. (3) PTopk-Minernop, a variant of PTopk-Miner that mines all rules, sorts them by
ranking scores, and returns the top-𝑘 ones. (4) PTopk-MinernoL, another variant without the learned
boundUBSCORE. (5) Topk-Filter, a variant of PTopk-Minernop that ditches objective measures from
ranking and uses them only for filtering, i.e., it mines all rules, filters those with low objective scores
and ranks the remaining with only subjective scores. (6) DCFinder [87], a DC discovery method
which is shown to outperform other DCs methods [87]; we parallelize it by [102] and extend it to
support constant and ML predicates by adding them into the evidence set [87]. (7) PMinerS [36], a
parallel REE discovery method by sampling. (8) AdaptiveMiner [94], a MapReduce-based algorithm
for mining association rules.

We compared PTopk-Minernop and PTopk-MinernoL to test the effectiveness of pruning strategies
and the learned bound, and with the others for efficiency although DCs and association rules
are restricted REEs. Here PTopk-Minernop, Topk-Filter, DCFinder, AdaptiveMiner and PMinerS
perform full discovery, i.e., they have to mine all rules from the data (entire or sampled), sort (or
filter) by ranking scores and return the top-𝑘 , while PTopk-Miner and Anytime-Miner incorporate
Mbi into the discovery process explicitly to achieve speed-up. Unless stated explicitly, all baselines
used the same bi-criteria model Mbi to compute ranking scores.

Moreover, we implemented the following to evaluate our bi-criteria model Mbi: (1) Bert [26], a
state-of-the-art language model (the distilbert-base-uncased), as a binary classifier with rule pairs
as input, separated by [SEP]; a softmax layer is added after the embedding of [CLS]. (2) BertMLM,
a variant of Bert that is further pre-trained on rules with masked-language modeling (MLM). (3)
Transformer [114], an encoder-decoder network via multi-head self-attention. (4) NoSub, a variant
ofMbi without subjective measures.

We conducted experiments on a cluster of up to 21 virtual machines (one for the coordinator), each
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Fig. 7. Performance evaluation

powered by 64GB RAM and 18 processors with 3.10 GHz.We ran the experiments 3 times, and report
the average here. We do not include the time of loading data and constructing auxiliary structure,
e.g., PLI for all algorithms. The bi-criteria model Mbi was trained via active learning once offline.

Experimental results. We next report our findings.
Exp-1: Scalability test. We first evaluated the scalability of PTopk-Miner and Anytime-Miner. As
will be seen shortly, our top-𝑘 discovery method is effective; with the pruning strategies, it can
achieve an 134X speedup on average. Unless stated explicitly, the default setting in our experiments
is 𝑛 = 20, 𝜎 = 10−6 · |D|2, 𝛿 = 0.75 and 𝑘 = 10. We adopted the combined predicate processing order
and used 3 objectivemeasures and 1 subjective measure. For the lack of space, wemainly show the re-
sults on NCVoter, one of the largest real-life dataset; the results on the other datasets are consistent.
Varying 𝑛. As shown in Figure 7(a), (a) PTopk-Miner scales well with the increase of machines: it is
3.15X faster when 𝑛 varies from 4 to 20. (b) It is feasible in practice. It takes 183s on NCVoter when
𝑛 = 20, as opposed to 12,003s by DCFinder. (c) PTopk-Miner is 99.40X and 4.29X faster than PTopk-
Minernop and PTopk-MinernoL on average, up to 110.65X and 5.25X, respectively. This verifies the
effectiveness of our pruning strategies and the learned bound UBSCORE. We omitted Topk-Filter
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since it also mines all REEs and is thus as slow as PTopk-Minernop. (d) PTopk-Miner is 67.24X faster
than DCFinder on average, up to 75.80X, showing the advantage of top-𝑘 discovery over traditional
full discovery, even though it discovers more expressive REEs. (e) Although PMinerS runs on small
samples, it is 4.37X slower than PTopk-Miner on average, which further verifies the effectiveness
of the pruning strategies. We will discuss its accuracy in Exp-3. (e) Anytime-Miner is slightly
slower than PTopk-Miner, since it maintains more rules in the heap (Section 5). Nonetheless, its
advantage is evident when users continuously want next top-𝑘 rules (see below).
Varying 𝜎 . Varying the support threshold 𝜎 from 10−1 |D|2 to 10−8 |D|2, we report the results in
Figures 7(b) and 7(c). As expected, all algorithms take longer when 𝜎 is smaller since they examine
more candidates, e.g., PTopk-Minernop is 147.57X slower when 𝜎 changes from 10−1 |D|2 to 10−8 |D|2.
Nevertheless, PTopk-Miner is faster than PTopk-Minernop, PTopk-MinernoL and DCFinder under
all 𝜎 , consistent with Figure 7(a). While PMinerS is slightly faster than PTopk-Miner for large 𝜎
on NCVoter, it sacrifices the accuracy, which will be discussed in Exp-3. DCFinder is not sensitive
to 𝜎 because it spends most of the time on evidence set construction, which is not related with 𝜎 .
PTopk-Miner is also less sensitive to 𝜎 , since it checks less REEs than PTopk-Minernop due to its
pruning strategies. Anytime-Miner has a similar trend as PTopk-Miner.
Varying 𝛿 .We varied the confidence bound 𝛿 from 0.75 to 0.95. As shown in Figure 7(d), (a) most
algorithms are faster given a smaller 𝛿 , e.g., PTopk-Miner and Anytime-Miner are 1.02X and 1.11X
faster, when 𝛿 varies from 0.95 to 0.75. This is because higher 𝛿 indicates REEswith fewer violations,
and hence more REEs are checked. (b) PTopk-Miner consistently outperforms the baselines.

Note that PTopk-Miner also performs the best for association rules (essentially constant CFDs).
Figure 7(e) shows the discovery time to mine such rules on DBLP, when we set 𝜎 = 10−4 |D|.
PTopk-Miner is 1.64X faster than AdaptiveMiner on average.
Varying 𝑘 .As shown in Figure 7(f) by varying𝑘 from 1 to 40, full discovery variants PTopk-Minernop,
PMinerS and DCFinder are indifferent to 𝑘 , since they mine all rules (i.e., REEs or DCs) from the
dataset (entire or sampled) regardless of 𝑘 . In contrast, PTopk-Miner takes much less time due
to its pruning strategies for top-𝑘 discovery; on average, it is 101.41X, 3.96X and 40.05X faster
than the three, respectively. This again justifies the use of top-𝑘 discovery over full discovery.
Anytime-Miner is also faster than the three, by adopting lazy evaluation for skipping unnecessary
REEs expansions. The costs of PTopk-Miner and PTopk-MinernoL increase when 𝑘 gets larger since
more REEs have to be checked, as expected.
Varying #top-𝑘 . Fixing 𝑘=10, we varied the number #top-𝑘 (round) of top-𝑘 results that users wish to
see. Different from the lazy evaluation of Anytime-Miner, when users continue to find the next top-
𝑘 , PTopk-Miner is executed with an increased value of 𝑘 and an increased heap size so that it exactly
returns the desired results. For instance, when #top-𝑘 = 4, PTopk-Miner discovers top-40 REEs.
Results are reported in Figure 7(g), when varying #top-𝑘 from 1 and 4. For the first top-𝑘 REEs,

there is no big difference in the runtime between Anytime-Miner and PTopk-Miner. However,
the advantage of Anytime-Miner over PTopk-Miner is more evident when the users want to see
more top-𝑘 results, e.g., when one asks for the 3rd top-10 REEs, Anytime-Miner is 95.0X faster
then PTopk-Miner. This is because Anytime-Miner maintains partial results and is more efficient
to resume the discovery. If Anytime-Miner accumulates sufficient partial results (including rules
that have been discovered but not in the top-𝑘 list), e.g., the 1st to the 4th top-10 on NCVoter, its
runtime may decrease rapidly because most of rules in next #top-𝑘 are already computed and stored.
However, when partial results are not enough, Anytime-Miner needs to spend time to discover
more satisfied ones, e.g., #top-𝑘 from 1 to 2 on NCVoter.

Using large Tax synthetic data D (15 attributes and 10M tuples), we tested the impact of the size
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|D| and the number 𝑛 of machines.
Varying |D| (synthetic).We varied the scaling factor of D from 20% to 100%, i.e., we changed the
number of relations and tuples per relation from 2 million to 10 million. As shown in Figure 7(h),
all algorithms take longer, as expected. PTopk-Miner still outperforms all competitors; for instance,
it takes PTopk-Miner 0.5h to run when D has 10M tuples, as opposed to 0.9h, 4.4h, 0.74h and 6.5h
by PTopk-MinernoL, PTopk-Minernop, PMinerS and DCFinder, respectively.
Varying 𝑛 (synthetic). Fixing |D| as 10M, we varied the number 𝑛 of machines from 4 to 20 in
Figure 7(i). Consistent with Figures 7(a). PTopk-Miner is 3.60X faster when 𝑛 varies from 4 to 20.

Exp-2: Effectiveness of the bi-criteria model. In this experiment, domain experts (our industry
partners), who well understood the requirements of their applications, were independently invited
to label 400 pairs of distinct rules. Rules used for training were generated by combining predicates
without worrying the validity (Section 3.2), on 1-3 relations, with an average of 5.45 predicates (see
Table 3 for a sample rule pair displayed to the experts, to be explained in Exp-4). To better visualize
the distribution, we compute the Jaccard similarity between each pair of rules and plot them in
boxplot in Figure 7(j). As shown there, both diverse and similar rule pairs are in the rule pool, to
optimize the information gain.
For each pair ⟨𝜑𝑖 , 𝜑 𝑗 ⟩ of rules, the expert labeled 1 on ⟨𝜑𝑖 , 𝜑 𝑗 ⟩ if she/he ranked 𝜑𝑖 higher than

𝜑 𝑗 ; otherwise, she/he labeled 0. To facilitate decision making, the experts were also provided with
the objective measures and data instance samples that satisfy these rules (not shown in Table 3).
For each expert, we trained a bi-criteria model by splitting her/his labeled pairs into training,
validation and testing sets as 80%, 10% and 10%, respectively; the accuracy in the testing data
was measured by the percentage of rule pairs whose relative rank is correctly identified. For a
fair comparison, Mbi and all baselines were trained/fine-tuned on the same sets of labeled rule
pairs. Below we report the average accuracy of the models from all experts. One can also train an
“aggreated” model by aggregating opinions from all experts; its performance is similar (not shown).
Accuracy vs. language models. We first compared Mbi against Bert, BertMLM and Transformer. As
shown in Figure 7(k), it consistently beats the three in accuracy, e.g., on DBLP, our accuracy is
0.846, which is 12%, 14% and 27% higher than the three, respectively.

We then varied the size of training data in Figure 7(l); all methods are more accurate given more
training data, e.g., the accuracy of Bert on Airport increases from 0.55 to 0.675, with 80% more
training data. In almost all cases,Mbi still has the best accuracy, since (a) the unique feature, i.e.,
permutation invariant, of logic rules cannot be captured by existing language models that learn
rules as natural language, (b) a language model typically has millions of parameters and often
over-fits with small data, and (c) the embedding domains of the pre-training of language models
(e.g., large corpus) and the downstream task (i.e., rule discovery) are different.
Effectiveness of subjective measures. We next studied the effectiveness of subjective measures by
comparing the accuracy of our modelMbi against NoSub. The results in Figure 7(k) verify that
objective measures alone do not suffice since users can have diverse application needs; without
the subjective measures, NoSub is reduced to linear regression and thus, is not accurate, e.g., on
DBLP, introducing subjective measures improves the accuracy by around 20%.
Varying #interaction. To verify the usefulness of active learning, we report the accuracy by varying
the number #𝑟 of rounds of interaction in Figure 7(m). The experts labeled 40 pairs of rules in each
round after 160 initial ones, a workload acceptable to domain experts. With larger #𝑟 , the accuracy
increases, e.g., after 5 rounds, accuracy changes from 0.85 to 0.95 on Hospital. Moreover, after 5
rounds, the accuracy gets stable since the model has accumulated enough training data. We find
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that it typically requires 5 rounds of interactions to reach a stable accuracy, and the improvement
is substantial (e.g., 17% on DBLP) with only 160 extra labeled instances.
Usefulness of top-𝑘 REEs. To evaluate whether we rank rules reasonably, we set up 10 independent
tasks over five datasets (Airport,DBLP, Inspection,NCVoter, and Adult); on each dataset, we mined
rules using two consequence sets. Note that each task has its own purpose, e.g., Adult with conse-
quence 𝑡 .class = “≤ 50K” aims to find rules for identifying the factors of low salary. Below we report
the average performance of top-𝑘 REEs over these 10 tasks. For each task, we used the 400 rule pairs
labeled by an expert 𝑃 to train Mbi. Given the objective/subjective measures learned, we mine two
lists of top-10 REEs using (1) PTopk-Miner and (2) Topk-Filter, which keep 100 REEswith maximum
objective scores and ranks the final top-10 by the subjective scores. The 20 rules (i.e., 10 from each
list) are shuffled and presented to another expert𝑄 different from 𝑃 (the one who trained the model),
who is instructed with the same task purpose as 𝑃 , to label each of these rules (1 if a rule is useful).

We compute the number of “votes” (i.e., labels) received by each rule and plot the percentage of
“votes” for each of top-10 REEs returned by PTopk-Miner in Figure 7(n). It shows that REEs ranked
higher are more favored, e.g., REEs ranked first to fifth are labeled as useful by 77% of users on
average, as opposed to 46% for REEs ranked sixth to tenth. The user ranking justifies the semantic
of top-𝑘 discovery. We also compared the “votes” received by PTopk-Miner and Topk-Filter; on
average, 6.15 REEs of PTopk-Miner are labeled as useful, as opposed to 5.1 by Topk-Filter. This
verifies that our design flexibly combines both measures to suit different needs.

Exp-3: Accuracy test.We evaluated the accuracy of top-𝑘 discovery. Note that PTopk-Minernop
did not use any pruning strategies and thus it returns exact top-𝑘 ; we compare it to evaluate the
impact of the learned bound UBSCORE on the accuracy. PMinerS mines all rules on samples, from
which we get the top-𝑘 for comparison.

Recall. Varying 𝑘 from 1 to 40, we reported the recall in Figure 7(o). Recall is defined as |ΣM∩ΣGT |
𝑘

,
where ΣM (resp. ΣGT) is the set of top-𝑘 rules discovered by the method M, e.g., PTopk-Miner
and PMinerS (resp. PTopk-Minernop). PTopk-MinernoL returns the exact top-𝑘 as PTopk-Minernop
(not shown), since the exact bound does not miss any rules. The recall of PTopk-Miner is close to
PTopk-Minernop. PMinerS is not accurate, e.g., 0.3, as opposed to 1.0 by PTopk-Miner when 𝑘 = 10.
We omit precision since it is the same as recall in this setting.

Exp-4: Effectiveness of PTopk-Miner. Finally, we present the case study of the effectiveness.
Effectiveness.We evaluated the accuracy of rules from PTopk-Miner vs. three baselines (decision
tree (DT), RIPPER𝑘 [24], FSDTO [80]) on labeled data DrugDisease and Adult, for predicting
half-life time of drugs (multi-classification) and incomes (binary classification), respectively. The
baselines learn rules, from which top-𝑘 rules are ranked via our bi-criteria model. For drugs,
we transform scalar values of attribute half_life_hours_curated to 4 categories. We split data
for training/validation/testing with 80%/10%/10%. As shown in Figure 7(p), PTopk-Miner is is on
average 3.3%, 3.52%, 3.82% more accurate than the three, up to 4.1%, 4.90% and 5.5%, respectively.
Case study. In the following, we (a) showcase a few real REEs discovered by PTopk-Miner on
DrugDisease and Inspectionwith 𝜎 ≥ 10 and 𝛿 ≥ 0.85. and (b) show how to label a sample rule pair.
(1) Rule DrugBank(𝑡0) ∧ DiseaseMeSH(𝑡1) ∧Map(𝑡2) ∧Map(𝑡3) ∧𝑡1.PreferredConceptYN = Y ∧
𝑡1.ConceptPreferredTermYN = Y∧MBert (𝑡0 [𝐴], 𝑡1 [𝐵]) ∧ 𝑡0.id = 𝑡2.drug_id∧ 𝑡1 .id = 𝑡3 .disea_id →
𝑡2.id = 𝑡3.id, where 𝐴 and 𝐵 are all attributes of 𝑡0 and 𝑡1. The rule states that if one disease with
preferred concept and term is semantically close to a drug (predicted byBert), they have drug-disease
association (DDA), as indicated by the same mapping tuple in Map. This rule ranks high since our
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drug-discovery collaborators want to find new DDA rules that involve both drugs and diseases.
(2) Rule DrugBank(𝑡0) ∧ DrugBank_halflife(𝑡1) ∧ 𝑡0.cal_water_solubility = C1 ∧ 𝑡0.cal_logp =

C2∧𝑡0 .cal_molecular_weight = C3∧𝑡0 .id = 𝑡1.id → 𝑡1 .half_life_hours_curated = C4, where C1 =
(−4, 1),C2 = (0, 1), C3 = (250, 350), C4 = (0, 15) are intervals, and cal_logp, cal_water_solubility,
cal_molecular_weight are features of drugs (defined in [1]). This rule says that if the features fit the
ranges, then it takes <15 hours for the amount of this drug in the body to be reduced by one half. Such
rules are prioritized by a pharmaceutical user who wants to study the factors of short half-life time.
(3) An REE on Inspection (𝜎 ≥ 10 and 𝛿 ≥ 0.85): Inspection(𝑡0) ∧ Inspection(𝑡1) ∧ 𝑡0.AKA_Name =
𝑡1.AKA_Name∧ 𝑡0 .inspection_Type = Canvass∧ 𝑡1.Results = Pass → 𝑡0 .Risk = 𝑡1.Risk. It says two
firms are equally risky if they have the same names, one with inspection type Canvass and the
other with inspection result Pass. It ranks high for inspectors who assess the risk level of regulated
facilities to determine a firm’s compliance with laws and regulations.
(4) Consider a sample rule pair ⟨𝜑𝑥 , 𝜑𝑦⟩ displayed to the experts for labeling in Table 3; both
are mined from Hospital. Here 𝜑𝑥 checks whether a hospital provides emergency service, by
considering its type, owner and location etc.; it is reliable since conf (𝜑𝑥 ) = 1; 𝜑𝑦 describes a more
common issue of deducing the zipcode of a hospital by its state and country, as reflected by its
higher support than 𝜑𝑥 . If a user wants to know whether a hospital has emergency service, she/he
can label 1 on ⟨𝜑𝑥 , 𝜑𝑦⟩, indicating that 𝜑𝑥 better fits the need.

Summary.We find the following. (1) Top-𝑘 discovery speeds up PTopk-Minernop, PTopk-MinernoL,
PMinerS and DCFinder by 134X, 6X, 14X and 86X on average over all settings, respectively, up to
168X, 12X, 65X and 138X. When 𝑛 = 20, it takes less than 200s to mine top-10 REEs from NCVoter
that has 1.68M tuples, as opposed to 15,798s, 661s, 611s and 12,003s by the four. (2) PTopk-Miner
also performs better than AdaptiveMiner for mining association rules. (3) PTopk-Miner scales
well with parameters 𝜎, 𝛿 and 𝑘 . (4) PTopk-Miner is parallelly scalable: on average, it is 3.12X
faster when the number 𝑛 of machines varies from 4 to 20. (5) The lazy evaluation strategy of
Anytime-Miner is effective: Anytime-Miner is 52.8X faster than PTopk-Miner when the users want
the 4th top-10 REEs. (6) Our pruning strategies and the learned bound UBSCORE are effective,
e.g., reducing the the runtime of PTopk-Miner by 12.79X and 5.19X on the Tax data of 10M tuples.
(7) Our bi-criteria model is on average 14.1% more accurate than language models. The subjective
measure improves the accuracy from 0.69 to 0.92. (8) PTopk-Miner are able to find useful REEs
beyond DCs by DCFinder and association rules by AdaptiveMiner, which are special cases of REEs.

8 CONCLUSION
Wehave studied discovery of top-𝑘 rules. Our novelty consists of the following: (1) a bi-criteriamodel
with both objective and subjective measures; (2) an active-learning method to learn the subjective
model and weight vector of various measures; (3) a top-𝑘 algorithm for discovering REEs, which
subsume common data quality rules and association rules as special cases; (4) an anytime algorithm
to continuouslymine the next top-𝑘 rules via lazy evaluation, and (5) parallelization of the algorithms
with the parallel scalability. Our experimental study has shown that the methods are promising.

One future topic is to study incremental top-𝑘 discovery in response to data updates. Another
topic is to integrate top-𝑘 discovery and sampling, to speed up discovery with accuracy guarantees.
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