
Discovering Top-k Relevant and Diversified Rules

WENFEI FAN, Beihang University, China, Shenzhen Institute of Computing Sciences, China, and University
of Edinburgh, United Kingdom
ZIYAN HAN, Beihang University, China
MIN XIE, Shenzhen Institute of Computing Sciences, China
GUANGYI ZHANG∗, Shenzhen Technology University, China

This paper studies the problem of discovering top-𝑘 relevant and diversified rules. Given a real-life dataset,
it is to mine a set of 𝑘 rules that are as close to users’ interest as possible, and meanwhile, as diverse to
each other as possible. It aims to reduce excessive irrelevant rules commonly returned by rule discovery.
As a testbed, we consider Entity Enhancing Rules (REEs), which subsume popular data quality rules as
special cases. We train a relevance model to learn users’ prior knowledge, rank rules based on users’ need,
and propose four diversity measures to assess the diversity between rules. Based on these measures, we
formulate a new discovery problem. We show that the bi-criteria discovery problem is NP-complete and
hard to approximate. This said, we develop a practical algorithm for the problem, and prove its approximation
bounds under certain conditions. Moreover, we develop optimization techniques to speed up the process,
and parallelize the algorithm such that it guarantees to reduce runtime when given more processors. Using
real-life data, we empirically verify that on average, the top-10 REEs discovered by our algorithm is able
to catch 77.5% of errors detected by the entire set Σall of REEs and achieve F1 = 0.74 for real error detection;
moreover, discovering top-ranked REEs is 62.4X faster than mining Σall.
CCS Concepts: • Information systems→ Information integration.
Additional Key Words and Phrases: Rule discovery, top-k, diversified
ACM Reference Format:
Wenfei Fan, Ziyan Han, Min Xie, and Guangyi Zhang. 2024. Discovering Top-k Relevant and Diversified Rules.
Proc. ACM Manag. Data 2, 4 (SIGMOD), Article 195 (September 2024), 28 pages. https://doi.org/10.1145/3677131

1 Introduction
Logic rules have found prevalent use in data cleaning, association analysis, knowledge discovery,
online recommendation, drug discovery and manufacturing industry, among other things [31]. To
make practical use of rules, we have to discover high-quality rules from real-life data. A number of
rule discovery methods have been studied [8, 11, 12, 17, 23, 26, 34–36, 43, 49, 51, 57, 70, 71, 78, 81, 97–
102, 106, 107, 109, 112, 115, 117], which typically take a dataset D as input, and mine or learn rules
from D such that the rules have support and confidence above predefined thresholds; here support
measures how often a rule can be applied, and confidence assesses how strongly the precondition
and consequence are associated.
∗Corresponding author

Authors’ Contact Information: Wenfei Fan, Beihang University, China and Shenzhen Institute of Computing Sciences, China
and University of Edinburgh, United Kingdom, wenfei@inf.ed.ac.uk; Ziyan Han, Beihang University, China, hanzy@act.
buaa.edu.cn; Min Xie, Shenzhen Institute of Computing Sciences, China, xiemin@sics.ac.cn; Guangyi Zhang, Shenzhen
Technology University, China, zhangguangyi@sztu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/9-ART195
https://doi.org/10.1145/3677131

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0001-5149-2656
HTTPS://ORCID.ORG/0000-0002-6614-3755
HTTPS://ORCID.ORG/0000-0003-2356-782X
HTTPS://ORCID.ORG/0000-0002-1252-7489
https://doi.org/10.1145/3677131
https://orcid.org/0000-0001-5149-2656
https://orcid.org/0000-0002-6614-3755
https://orcid.org/0000-0003-2356-782X
https://orcid.org/0000-0002-1252-7489
https://doi.org/10.1145/3677131

195:2 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

Rock [7, 14] is an industry system that combines rules and ML for data cleaning and association
analyses. From working with its developers and users, we find that practitioners in industry raise
the following issues about the previous methods for rule discovery.
(1) Excessive irrelevant rules. The prior methods typically return the entire set of rules from D
with high enough support and confidence. The set is often quite large. For instance, from a small
dataset with 27 attributes and 368 tuples, 128,726 functional dependencies (FDs) are found [80].
The users are often overwhelmed by the excessive rules and have to spend a huge amount of
time to manually inspect and select rules that fit their need. Moreover, practitioners often have
developed prior knowledge about their applications, and even have accumulated dozens of rules
after years of practice. Thus they only want rules that fit their need and are unknown/novel to
them, not those that are already known or “trivial”/“common-sense”, e.g., only 10% rules discovered
are considered as novel in bank reporting [95].
(2) Extensive cost. It is prohibitively expensive to mine the entire set of rules from D. The prior
methods enumerate candidate rules, for each rule, compute its support and confidence by validating
it on the entire dataset, e.g., it takes >3 hours on a dataset with 1.68M tuples even with 20 machines
(Section 6). Moreover, it is often costly to apply the large number of mined rules to datasets, e.g., [92].
(3) Much of a muchness. To reduce irrelevant rules and discovery cost, top-𝑘 discovery has been
studied, to find top-ranked rules based on objective measures (support and confidence) and sub-
jective measures (relevance to users’ need), from relations [36, 107] and graphs [40]. Unfortunately,
they still fall short in industry, because the rules returned are often too “homogeneous” to each other
and hence, are often considered redundant and non-interesting. As an evidence, a rule-based method
for field search was adopted in a data platform, aiming to improve the diversity of the results [93].
Example 1: As reported in [94], a leading bank purchased data from external sources and found a
large number of duplicated companies, leading to heavy verification effort, especially for companies
established before 2015. This is because before 2015, there was no unified coding system, and
companies used registration codes, organization codes and/or tax identifiers to identify themselves,
which were prone to inconsistencies and inaccuracies.

The bank used the following real rule for entity resolution (ER).
𝜑k : Two companies 𝑡 and 𝑠 refer to the same company if they have (a) similar names and (b) the
same industry type (e.g., retail).

This rule was useful since companies with similar names can refer to different entities (e.g., Apple
Inc. [3] and Apple Corps Ltd. [2]) and industry types give useful side information to make decisions.

Consider two real rules 𝜑1 and 𝜑 ′
1 newly discovered for ER, where 𝜑1 identifies two companies if

they have same Unified Social Credit Code (USCC, the unique identifier issued for business in the
country after 2015 [6]), and 𝜑 ′

1 does so if they have the same name and same industry type. One
can see that 𝜑 ′

1 and 𝜑k are “homogeneous”, differing only in how they compare company names.
If two companies can be identified by 𝜑 ′

1, they can be trivially identified by 𝜑k. Therefore, 𝜑 ′
1 is

“unsurprising” and “redundant” to the bank.
In contrast, 𝜑1 is more helpful than 𝜑 ′

1, since, e.g., it uses a different set of attributes to identify
companies and thus in principle,𝜑1 can identify some companies that are unknown by using𝜑k or𝜑 ′

1.
Based on support and confidence, 𝜑 ′

1 may also be returned by top-𝑘 algorithms [107] for its higher
counts. With this comes the need for both relevance and diversity measures in rule discovery. 2

As suggested by the example, the practitioners often want only rules that are (a) relevant to their
need and are unknown or surprising to them, and (b) dissimilar to each other, and diverse enough
to cover different categories or characterize different features.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:3

These concerns raise several questions. How should we measure the relevance and diversity? Can
we formulate a bi-criteria problem for discovering a set of rules that are on the one hand, relevant
to users’ need, and on the other hand, are dissimilar to each other? What is the complexity of this
problem? Is it possible to develop an algorithm that is both accurate and scalable to large datasets?
Contributions & organization. This paper tackles these questions. For rules, we consider Entity
Enhancing Rules (REEs) [37, 38], a class of rules being used by Rock. REEs subsume popular data
quality rules as special cases, such as conditional functional dependencies (CFDs) [33], denial
constraints (DCs) [13] and matching dependencies (MDs) [32]; moreover, REEs are collectively
defined across multiple tables, and may embed ML models as predicates. After reviewing REEs in
Section 2, we develop the following.
(1) A bi-criteria problem (Section 3). We advocate a different rule discovery paradigm. Given a set
D, we find 𝑘 top-ranked REEs from D such that the rules are both relevant to users’ need and
diverse to each other. This reduces redundant rules and discovery cost.
We train a relevance model to learn users’ need, and introduce four measures to assess the

diversity of REEs. Based on the model and measures, we define a bi-criteria objective function and
formulate the discovery problem for top-𝑘 relevant and diversified REEs. We show that the problem
is NP-complete and hard to approximate.
(2) An approximate algorithm (Section 4). Despite the hardness, we develop an algorithm for the
new discovery problem, denoted by TopKDivMiner. TopKDivMiner greedily mines relevant and
diverse REEs in rounds. We show that for certain relevance and diversity measures, it ensures an
(1− 1/𝑒)-approximation bound. Moreover, under certain conditions, it guarantees 4-approximation.
(3) Optimization and parallelization (Section 5). To make the algorithm practical, we develop strate-
gies to speed up the discovery process. We propose pruning strategies within each greedy round and
between rounds of TopKDivMiner. To scale with large datasets D, we parallelize TopKDivMiner,
denoted by PTopKDivMiner. We show that PTopKDivMiner is parallelly scalable [62], i.e., they
guarantee to reduce parallel runtime when more processors are used.
(4) Experimental study (Section 6). Using real-life datasets, we find: (a) Discovery of top-𝑘 relevant
and diversified rules is efficient. PTopKDivMiner takes 881s to mine top-10 rules from 1.68M tuples;
for all 𝑘 ≤ 40, it is on average 62.4X faster than mining the entire set Σall. (b) PTopKDivMiner is
parallelly scalable: on average, it is 3.05X faster when 20 machines are used instead of 4. (c) The
rules returned by PTopKDivMiner are relevant and diverse: top-10 rules are able to detect real
“unknown-to-user” errors in datasets that were already cleaned by users’ own methods, with F1
above 0.74, 39.62% higher than the top-𝑘 method of [36]; moreover, they catch 77.5% of errors
detected by Σall, i.e., top-10 rules are able to detect diverse errors.
Related work. We categorize the related work as follows.
Rule mining. Rule learning has been extensively studied, by greedily growing/pruning a predicate
set [27, 47], logic programming [76], decision trees [19, 86–88], custom branch-and-bound
algorithms [12, 56, 68], Bayesian methods and sampling [23, 97, 106], etc.

To learn multiple-variable rules such as functional dependencies (FDs) [9], DCs [13], CFDs [33],
MDs [32], REEs [37], and their extensions [49, 51, 99, 101], it requires more sophisticated techniques.
Their discovery typically follows levelwise search [57, 71, 78, 112], depth-first search (DFS) [8, 109]
or a hybrid one [60, 81, 98]. The levelwise search, a form of breath-first search (BFS) initiated by
Apriori [11] and its alternatives [74, 102, 115], has been modified to mine FDs and CFDs in, e.g.,
TANE [57] and CTANE [34], respectively. Alternatively, DFS is more space-efficient, and has been

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:4 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

employed to mine, e.g., CFDs by FastCFDs [34], DCs by FastDC [26] and DCFinder [83]. Sampling
is essential for many of these methods to scale [17, 35, 70]. In addition, there have been ML-based
attempts to learn rules [24, 43, 73, 117], or to replace certain components of rule discovery [25, 37].
Our algorithms adopt the BFS approach.
Top-𝑘 diversified algorithms. The problem of diversity maximization was first studied as subset
selection by [89], and a variety of diversity notions were proposed in [22]. Other than diversity,
a second modular objective of the selected subset is simultaneously optimized [52]. More general
objectives also appeared [18, 28, 84]. Other statistical definitions of diversity, e.g., the coefficient
of variation [15] and balancing counts among disjoint classes [54], also exist.

Incorporating diversity into top-𝑘 query processing is of great interest for reducing redundancy,
such as finding diverse top-𝑘 frequent patterns [110], matched subgraphs [39, 111] and cliques [114].
Diversity is particularly helpful to information retrieval [21], where user clicks can be used as
signals to automatically learn a diversity model [58, 69]. There has also been work that diversifies
top-𝑘 results via post-processing [85]. Theory-wise, a standard setup has been analyzed where the
top-𝑘 results are aggregated amongmultiple given sorted lists [45]. The complexity of diversification
and query evaluation has also been studied [29, 52, 105].

Closer to this work is top-𝑘 rule discovery [36, 96, 103, 107, 108]. [107] proposes a general scheme
for top-𝑘 association rule discovery, which is amenable to more pruning operations than searching
over a fixed-structure. [96, 108] look for top-𝑘 predicates that each cover outliers in the data whose
removal causes dramatic change to the aggregation score. [103] mines special top-𝑘 preference rules
from user rated reviews. [36] finds top-𝑘 rules with an ML-based relevance model that learns user
preference by interactive pairwise comparisons. [83] prunes and ranks rules by three interesting
measures: succinctness, coverage and degree of approximation; more interestingness measures
are discussed in [50, 54]. On the other hand, early research on diverse rules focuses on a limited
form of diversity [44], or coverage-based redundancy [63, 116]. [40] generalizes conventional
association rules on itemsets to graph-pattern association rules (GPARs); it also studies diversified
top-𝑘 GPARs, but the diversity is specialized for non-overlap between graph entities.
Among these, [36] is the closest one, which only focuses on relevance but does not study

diversity. In contrast, we incorporate both relevance and diversity into rule ranking, to avoid
excessive rules, extensive cost and homogeneous results; this introduces novel challenges in rule
discovery. To the best of our knowledge, this work makes the first effort to study discovery of
top-𝑘 relevant and diversified rules. (1) We propose various diversity measures from syntactic,
structural and semantic perspectives, that are more general than the prior ones [40, 44, 116]. (2)
We train a relevance model that is more accurate and easier to use, differing from traditional
interesting measures [40, 107], interactive selection by users [10] and recent ML models [30, 36]. (3)
We formulate the bi-criterion discovery problem, following the common form for a multi-objective
optimization problem [10, 63]. We settle its complexity and approximation hardness. (4) We
develop the first algorithms for the new discovery problem, with approximation bounds under
certain conditions, pruning strategies, and parallel scalability to ensure accuracy and efficiency.

2 Collective Rules with ML Models
We next present entity enhancing rules (REEs) defined in [37, 38].
Preliminaries. We define REEs on a database schema R = (𝑅1, . . . , 𝑅𝑚), where 𝑅 𝑗 is a relation
schema 𝑅 𝑗 (𝐴1 : 𝜏1, . . . , 𝐴𝑘 : 𝜏𝑘), and each 𝐴𝑖 is an attribute of type 𝜏𝑖 . An instance D of R is
(𝐷1, . . . , 𝐷𝑚), where 𝐷𝑖 is a relation of 𝑅𝑖 , i.e., a set of tuples of 𝑅𝑖 (𝑖 ∈ [1,𝑚]).
Predicates. Predicates over schema R are defined as follows:

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:5

𝑝 ::= 𝑅(𝑡) | 𝑡 .𝐴 ⊕ 𝑐 | 𝑡 .𝐴 ⊕ 𝑠 .𝐵 | M(𝑡 [𝐴], 𝑠 [𝐵]),
where ⊕ is an operator in {=,≠, <, ≤, >, ≥}. Following tuple relational calculus [9], (a) 𝑅(𝑡) is a
relation atom overR, where𝑅 ∈ R, and 𝑡 is a tuple variable bounded by𝑅(𝑡); (b) 𝑡 .𝐴 is an attribute of 𝑡
when 𝑡 is bounded by𝑅(𝑡) and𝐴 is an attribute in𝑅; (c) 𝑡 .𝐴⊕𝑐 is a constant predicatewhen 𝑐 is a value
in the domain of 𝐴; (d) 𝑡 .𝐴 ⊕ 𝑠 .𝐵 is a variable predicate that compares compatible attributes 𝑡 .𝐴 and
𝑠 .𝐵, i.e., 𝑡 (resp. 𝑠) is bounded by 𝑅(𝑡) (resp. 𝑅′ (𝑠)), and𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′ have the same type; and (e)
M(𝑡 [𝐴], 𝑠 [𝐵]) is an ML predicate, where 𝑡 [𝐴] and 𝑠 [𝐵] are vectors of pairwise compatible attributes.
Here M can be any existing ML model that returns a Boolean value, e.g., Mreg ≥ 𝛿 for the

strength of a regression model Mreg and a threshold 𝛿 . We consider M such as (1) NLP models,
e.g., Bert [30], for text classification; (2) ER models and link prediction models, e.g., Bert for semantic
matching; and (3) models for error detection and correction, e.g., generative models [113].
Predicate construction. Following the practice of [14], we construct (a) constant predicates 𝑡 .𝐴 ⊕ 𝑐

by examining all candidate values as 𝑐 if 𝐴 is a categorical attribute, and determining the threshold
𝑐 using decision trees if 𝐴 is a numerical attribute; (b) variable predicates 𝑡 .𝐴 ⊕ 𝑠 .𝐵 by identifying
correlated attributes 𝐴 and 𝐵 via semantic embeddings; and (c) ML predicatesM(𝑡 [𝐴], 𝑠 [𝐵]), by
identifying correlated attributes and pre-computing the ML predictions.
REEs. An entity enhancing rule (REE) 𝜑 over R is defined as

𝜑 : 𝑋 → 𝑝0,

where 𝑋 is a conjunction
∧
𝑝 of predicates 𝑝 over R, and 𝑝0 is a predicate over R whose tuple

variables also appear in 𝑋 . We refer to 𝑋 as the precondition of 𝜑 , and 𝑝0 as the consequence of 𝜑 .
Example 2: Consider schemas Company (cid, cname, USSC, reg_code (registration code), reg_cap
(registered capital), legal_rep (legal representative), est (establishment), rev (revocation), type) and
Person (pid, name, sex, ID_no.). Below are some example REEs.
(1) 𝜑1 : Company(𝑡) ∧ Company(𝑠) ∧ 𝑡 .est > 2015 ∧ 𝑠 .est > 2015 ∧ 𝑡 .USCC = 𝑠 .USCC → 𝑡 .cid =

𝑠 .cid. This REE specifies 𝜑1 in Example 1. It identifies two companies by their USCC, issued after
2015. Similarly 𝜑k and 𝜑 ′

1 of Example 1 can be expressed as REEs.
(2) 𝜑2 : Company(𝑡) → 𝑡 .est ≤ 𝑡 .rev. It says that a company must be established before it is
revoked; 𝜑2 can fix errors in attribute rev.
(3) 𝜑3 : Company(𝑡) ∧Company(𝑡 ′) ∧Person(𝑠) ∧Person(𝑠′) ∧ 𝑡 .legal_rep = 𝑠 .pid∧ 𝑡 ′ .legal_rep =

𝑠′ .pid ∧ 𝑠 .ID_no. = 𝑠′ .ID_no. ∧ 𝑡 .reg_code = 𝑡 ′ .reg_code → MER (𝑡 .cid, 𝑡 .cid), where MER is an
ER model that identifies companies 𝑡 and 𝑡 ′. Here 𝜑3 explains the prediction ofMER in logic, i.e.,
companies 𝑡 and 𝑡 ′ are identified since they have same registration code and legal representative.

2

Semantics. Consider an instance D of R. A valuation ℎ of tuple variables of 𝜑 in D, or simply a
valuation of 𝜑 , is a mapping that instantiates each variable 𝑡 of 𝜑 with a tuple in a relation 𝐷 of D.

We say that ℎ satisfies a predicate 𝑝 , written as ℎ |= 𝑝 , if the following are satisfied: (1) If 𝑝 is
a relation atom 𝑅(𝑡), 𝑡 ⊕ 𝑐 or 𝑡 .𝐴 ⊕ 𝑠 .𝐵, then ℎ |= 𝑝 is interpreted as in tuple relational calculus
following the standard semantics of first-order logic [9]. (2) If 𝑝 is M(𝑡 [𝐴], 𝑠 [𝐵]), then ℎ |= 𝑝 if M
predicts true on (ℎ(𝑡) [𝐴], ℎ(𝑠) [𝐵]).
For precondition 𝑋 , we write ℎ |= 𝑋 if ℎ |= 𝑝 for all predicates 𝑝 in 𝑋 . For an REE 𝜑 = 𝑋 → 𝑝0,

we write ℎ |= 𝜑 if ℎ |= 𝑋 implies ℎ |= 𝑝0. An instance D of R satisfies 𝜑 , denoted by D |= 𝜑 , if for
all valuations ℎ of tuple variables of 𝜑 in D, ℎ |= 𝜑 . We say that D satisfies a set Σ of REEs, denoted
by D |= Σ, if for all 𝜑 ∈ Σ, D |= 𝜑 .
Example 3:Assume thatD has two relations𝐷1 and𝐷2 of schemaCompany and Person in Tables 1

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:6 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

tid cid cname USSC reg_code reg_cap legal_rep est rev type
𝑡1 𝑐1 Brilliant Tech 91310101MA1FL5Y06J 5796214-5 $5M 𝑝1 2020 - IT
𝑡2 𝑐2 Brilliant Group Holding 91310101MA1FL5Y06J 5796214-5 $5M 𝑝2 2020 - IT
𝑡3 𝑐3 Blue Sky Co., Ltd - 2468013-7 $2M 𝑝4 2010 2014 Retail
𝑡4 𝑐4 Blue Sky Co., Ltd - 2468013-7 $2M 𝑝4 2010 2014 Retail
𝑡5 𝑐5 GreenHarbor Foods 91320500MA1M9U3P5U 5796214-5 $1M 𝑝5 2016 2019 Food

Table 1. Company relation 𝐷1

tid pid name sex ID_no.
𝑡6 𝑝1 J. Smith M BJ2023000123456A
𝑡7 𝑝2 John Smith M BJ2023000123456A
𝑡8 𝑝3 J. Smith F SH2022005678901B
𝑡9 𝑝4 Chen Li F GZ2021098765432C
𝑡10 𝑝5 Ada Chan F CQ2020123456789D

Table 2. Person relation 𝐷2

and 2, respectively. A valuation ℎ1 : {𝑡1 ↦→ 𝑡, 𝑡2 ↦→ 𝑠} satisfies 𝜑1 and it identifies 𝑐1 and 𝑐2. 2

Properties. (1) As shown in [37], REEs subsume CFDs, DCs and MDs as special cases. More specifi-
cally, (a) DCs are REEs defined with atomic formulas of the form 𝑡 .𝐴 ⊕ 𝑐 and 𝑡 .𝐴 ⊕ 𝑠 .𝐵 on single
tables. (b) CFDs are REEs defined in terms of two relation atoms 𝑅(𝑡) and 𝑅(𝑠) of the same relation
𝑅, and equality predicates 𝑡 .𝐴 = 𝑠 .𝐵 and 𝑡 .𝐴 = 𝑐 . (c)MDs can be expressed as REEs 𝑋 → 𝑡 .id = 𝑠 .id
where 𝑋 has two relation atoms 𝑅1 (𝑡) and 𝑅2 (𝑠), equality predicate 𝑡 .𝐴 = 𝑠 .𝐵 andM(𝑡 [𝐴], 𝑠 [𝐵])
that simulates similarity checking. (2) As indicated in Example 2, REEs may embed ML models as
predicates, and unify ER, CR and association analysis. An REE may carry multiple tuple variables
for collective analysis across tables [16], e.g., 𝜑3. (3) Moreover, one can discover logic conditions 𝑋
to explain predictions of certain ML modelM in an REE of the form 𝑋 → M(𝑡 [𝐴], 𝑠 [𝐵]), e.g., 𝜑3,
whenM is its consequence.

3 The Discovery Problem
This section proposes a framework for rule discovery, which is open to any relevance and diversity
measures. We first give example relevance and diversity measures for REEs (Section 3.1 and Sec-
tion 3.2). Then we define the objective function, formulate the discovery problem for top-𝑘 relevant
and diversified REEs, and show that the problem is NP-hard and hard to approximate (Section 3.3).

3.1 Relevance Measures
To discover rules that fit users’ need, it is necessary to define relevance measures that capture
users’ prior knowledge or interests. Given an REE 𝜑 , we use 𝛿rel (𝜑) to indicate the relevance of
the rule, such that the higher 𝛿rel (𝜑) is, the more relevant 𝜑 is to users’ need.

Below we define a relevance measure, including (a) conventional support and confidence, and (b)
an ML-based relevance model.
Support. This is to quantify how often an REE can be applied to D. Note that our predicates can
be classified into two types, namely, (a) unary predicates with only one tuple variable (e.g., 𝑡 .𝐴 ⊕ 𝑐),
and (b) binary predicates with two tuple variables (e.g., 𝑡 .𝐴 ⊕ 𝑠 .𝐵). Following [36], we define the
support of 𝜑 : 𝑋 → 𝑝0 in D, denoted by supp(𝜑,D), based on the type of consequence 𝑝0. This
is also practiced by e.g., [41], which picks pivots to define the support.
(1) If 𝑝0 is a binary predicate with tuple variables 𝑡0 and 𝑠0, we define supp(𝜑,D) = |spset(𝜑,D)|,
where spset(𝜑,D) is the support set of 𝜑 , defined as {⟨ℎ(𝑡0), ℎ(𝑠0)⟩ | ℎ is a valuation of 𝜑 in D,
ℎ |= 𝑋 and ℎ |= 𝑝0} i.e., the set of all tuple pairs ⟨ℎ(𝑡0), ℎ(𝑠0)⟩ with ℎ |= 𝜑 .
(2) If 𝑝0 is a unary predicate with variable 𝑡0, we define supp(𝜑,D) = |spset(𝜑,D)|2, where
spset(𝜑,D) = {ℎ(𝑡0) | ℎ is a valuation of 𝜑 in D, ℎ |= 𝑋 and ℎ |= 𝑝0}. Note that we take a square

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:7

on the set size so that the supports of REEs with unary consequences and the supports of REEs
with binary consequences are of the same scale.

For an integer 𝜎 , an REE is 𝜎-frequent on D if supp(𝜑,D) ≥ 𝜎 .
It is known that supp(𝜑,D) is anti-monotonic, i.e., given 𝜑 : 𝑋 → 𝑝0 and 𝜑 ′ : 𝑋 ′ → 𝑝0 with the

same consequence 𝑝0, we write 𝜑 ⪯ 𝜑 ′ if 𝑋 ⊆ 𝑋 ′, i.e., 𝜑 is less restrictive than 𝜑 ′. For any instance
D of R, 𝜑 and 𝜑 ′, if 𝜑 ⪯ 𝜑 ′, then spset(𝜑 ′,D) ⊆ spset(𝜑,D) and supp(𝜑 ′,D) ≤ supp(𝜑,D).
Similarly, we write 𝜑 ≺ 𝜑 ′ if 𝑋 ⊂ 𝑋 ′.
Remark. We adopt the support following the common practice of rule discovery. Nevertheless, our
formulation is open to any relevance measures, e.g., one can define a relevance measure based on the
largest sub-instance Dsub of D such that Dsub |= 𝜑 [70]. We can also define the support for a predi-
cate (or a predicate set, see below) and only consider predicates above a threshold in rule discovery.
Confidence. It measures how strong the association between precondition 𝑋 and consequence 𝑝0
is for an REE 𝜑 = 𝑋 → 𝑝0. More specifically, the confidence of 𝜑 onD is a value in [0, 1] defined as:

conf (𝜑,D) = |spset(𝜑,D)|
|spset(𝑋,D)| .

where spset(𝑋,D) is the set of tuple pairs (resp. tuples) satisfying all predicates in 𝑋 for binary
consequence 𝑝0 (resp. unary 𝑝0). The use of confidence helps us to discover useful rules from noisy
data.

For a threshold 𝜂, REE 𝜑 is 𝜂-confident on D if conf (𝜑,D) ≥ 𝜂.
Relevance model. To capture users’ prior knowledge, we learn a relevance model Mrel from user
data. Taking an REE 𝜑 as input, it outputs a relevance score Mrel (𝜑), indicating how relevant 𝜑 is.

We learn the relevance modelMrel from relative comparisons of a number of rule pairs. However,
differing from [36] which merely relies on pre-trained embeddings and asks users to directly give
a 0/1 label on each rule pair, our novelty includes: (a) a data-dependent rule embedding scheme
and (b) a semi-automatic labeling strategy.

To learn Mrel, we assume the following two sets as input: (a) a set Ddirty of (possible dirty) data,
from which we discover a set Σs of rules for constructing the training rule pairs for the relevance
model Mrel and generate the data-dependent embeddings; here Ddirty is sampled randomly from
the original dataset D so that Ddirty (approximately) follows the same distribution as D; and (b)
Dclean, the datasetDdirty cleaned by the users by employing their own methods, including rules that
they have already known. Various cleaning methods are in place, e.g., rule-basedHoloclean [91] and
ML-based Baran [72], and the users can pick whatever they need. As will be verified in Section 6, a
medium size of Ddirty/Dclean (e.g., 20K tuples) typically suffices to provide informative rule pairs
for training Mrel to achieve reasonable accuracy (e.g., >0.85).
Data-dependent rule embedding. Given an REE 𝜑 : 𝑋 → 𝑝0, we create its embedding vector 𝐸𝜑 in a
hierarchical manner.
We first generate an embedding 𝐸𝑝 for each predicate 𝑝 ∈ 𝑋 ∪ {𝑝0}. Then, the embedding of

the precondition 𝑋 , denoted by 𝐸𝑋 , is 𝐸𝑋 = 𝜌 (∑𝑝∈𝑋 Φ(𝐸𝑝)), where 𝜌 and Φ are two linear layers
without activation functions. Moreover, the embedding of the consequence 𝑝0 is exactly 𝐸𝑝0 , i.e., the
predicate embedding of 𝑝0. Finally, we obtain the rule embedding 𝐸𝜑 , by concatenating 𝐸𝑋 and 𝐸𝑝0 .

The initial predicate embeddings play a fundamental role in the hierarchical embedding scheme.
However, prior methods typically generate initial embeddings without considering data (e.g.,
Ddirty) where rules are mined/applied. To tackle this, we advocate a data-dependent embedding
scheme. We construct a heterogeneous multi-relational graph𝐺 to capture the connection between
predicates and Ddirty (see below). Then the predicate embeddings are learned via existing graph

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:8 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

embedding tools, e.g., PyTorch-BigGraph [66].
Graph construction. The graph 𝐺 = (𝑉 , 𝐸, 𝐿) depicts how predicates are satisfied by Ddirty, where
(1) 𝑉 is the set of vertices, in which each vertex represents a tuple 𝑡 of Ddirty or an attribute value,
(2) 𝐸 ⊆ 𝑉 × 𝐿 × 𝑉 is the set of edges in which 𝑒 = (𝑣, 𝑙, 𝑣 ′) denotes an edge labeled with 𝑙 ∈ 𝐿

from vertex 𝑣 to 𝑣 ′. We have two types of edges in 𝐸 : (a) (𝑡, 𝐴, 𝑐), indicating that 𝑡 .𝐴 = 𝑐; and (b)
(𝑡, 𝑝, 𝑠), indicating that the pair (𝑡, 𝑠) |= 𝑝 , where 𝑝 is a binary predicate. Given Ddirty and a set Pall
of predicates concerned (see below), we construct 𝐺 , by iterating each tuple in Ddirty (resp. each
tuple pair and each predicate) to build edges of type (a) (resp. type (b)).
Predicate set Pall. Given 𝜎 and 𝜂, we denote by Σall the set of all valid REEs, i.e., 𝜎-frequent and
𝜂-confident REEs, on D. Clearly, Σall may contain excessive rules that are irrelevant to users’
applications. To reduce such rules in discovery, we adopt common strategies [35] to (1) pick some
application-dependent candidate consequences 𝑝0, pertaining to the application, and (2) learn a
set Pall of predicates that we should concern from the entire space via graphical lasso [46], so that
for each 𝑝 in Pall, 𝑝 is relevant to some candidate 𝑝0.
Lightweight model with learnable bounds.We adopt a lightweightMrel to output the relevance of
a given REE 𝜑 , denoted by Mrel (𝜑). Following [36], Mrel employs a learnable bound on relevance
so as to allow early termination and effective pruning in rule discovery.

Mrel (𝜑) = UBL − ReLU(wT
light𝐸𝜑 + 𝑏light),

where 𝐸𝜑 is rule embedding, wlight, 𝑏light and UBL are learnable parameters and ReLU is the activa-
tion function. Note thatMrel (𝜑) ≤ UBL, and thus, UBL is an upper bound on the relevance score.
Labeling and training. We mine rules on Ddirty to build training rule pairs for Mrel. Here any
discovery method can be used, e.g., level-wise mining [35] or random predicate combination [36].
We adopt the former to mine valid rules on Ddirty. However, it takes 𝑂 (Σ𝜑∈C(Pall)×Pall |Ddirty | |𝜑 |)
time in the worst case, where C(Pall) is the power set of Pall and |𝜑 | is the number of predicates
in 𝜑 . Thus we can limit the maximum number of REEs that can be mined in Ddirty, from which
we randomly form training rule pairs forMrel.

As it is labor-intensive for users to label a large number of rule pairs, we adopt a semi-automatic
labeling strategy. Given a pair of REEs ⟨𝜑𝑖 , 𝜑 𝑗 ⟩ mined from Ddirty, we compare their relevance by
comparing their ability of detecting potential errors in Dclean. There are many error measures in
the literature (e.g., 𝐺1, 𝐺2 and 𝐺3 for the number of violating pairs, the number of violating tuples
and the number of tuples one has to delete to satisfy the dependency, respectively [59, 65, 70, 82]).
They have different behaviors.

Specifically, given 𝜑 : 𝑋 → 𝑝0, we assume w.l.o.g. that 𝑝0 is a binary predicate with variables 𝑡0
and 𝑠0, and ℎ is a valuation of 𝜑 .
(1) Measure 𝐺1: One can regard each tuple pair ⟨ℎ(𝑡0), ℎ(𝑠0)⟩ such that ℎ |= 𝑋 but ℎ ̸ |= 𝑝0 as an
error detected by 𝜑 . Such ℎ is called a violation of 𝜑 , i.e., ℎ witnesses that Dclean ̸ |= 𝜑 . We write
𝜑𝑖 ≪𝐺1 𝜑 𝑗 if 𝜑 𝑗 detects more such erroneous tuple pairs than 𝜑𝑖 in Dclean.
(2) Measure𝐺2: One can also regard a tuple as an error if it is involved in a violation ℎ of 𝜑 . Similarly,
we write 𝜑𝑖 ≪𝐺2 𝜑 𝑗 if 𝜑 𝑗 catches more potential erroneous tuples than 𝜑𝑖 in Dclean.
(3) Measure 𝐺3: The last measure is based on the minimal number of tuples to remove from Dclean
for an REE to hold. Let D𝑖 (resp. D𝑗) be the largest sub-instance of Dclean such that D𝑖 |= 𝜑 (resp.
D𝑗 |= 𝜑). We write 𝜑𝑖 ≪𝐺3 𝜑 𝑗 if |D𝑖 | > |D𝑗 | since more erroneous tuples are detected and removed
from D𝑗 for 𝜑 𝑗 to hold on Dclean.
As remarked in [70], 𝐺1 and 𝐺3 can be computed in PTIME, while 𝐺3 can only be computed

in PTIME for FDs. Nevertheless, we can reduce the computation of 𝐺3 to a minimum vertex cover

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:9

problem, for which a 2-approximate algorithm exists, based on the concept of a conflict graph,
in which vertices represent tuples and edges represent violations. Users are free to select any one
of them. As will be shown in Section 6, we will test the effect of these error measures.

Intuitively, the potential errors detected by an REE 𝜑 in Dclean are those that are “unknown” and
“surprising” to the users since Dclean has already been cleaned by their existing methods. Therefore,
these errors are beyond the users’ prior knowledge. The more such errors 𝜑 detects, the more
“novel” and useful 𝜑 is to the users.

We adopt the Siamese neural network [20] with shared parameters to get the score of 𝜑𝑖 /𝜑 𝑗 ,
and train Mrel with cross entropy loss.
Example 4: Continuing with Example 1, assume that the user has cleaned Ddirty using the known
rule 𝜑k. Since 𝜑 ′

1 is “homogeneous” to 𝜑k, it cannot detect “unknown” and “surprising” errors in
Dclean, while 𝜑1 does. Therefore, we label 𝜑 ′

1 ≪ 𝜑1 for training Mrel. 2

Putting these together, we define the relevance of 𝜑 as
𝛿rel (𝜑) = 𝑤 · (supp(𝜑,D) + conf (𝜑,D)) + (1 −𝑤) · Mrel (𝜑),

where 𝑤 is a weight assigned by users to the objective measure, and supp(𝜑,D) and 𝛿rel (𝜑) are
normalized in the range of [0, 1].

3.2 Diversity Measures
We next propose four diversity measures 𝛿div (Σ) for rules. For a set Σ of REEs over schema R,
𝛿div (Σ) denotes the diversity among the rules in Σ such that the larger 𝛿div (Σ) is, the more diverse
the rules in Σ are. We use 𝛿div (Σ) to characterize the different features embedded in the rules and
the coverage of the rules for a dataset.
Attribute non-overlap. Intuitively, a diverse rule set should be characterized by a variety of
attributes (features). Thus, to promote diversity, a natural idea is to maximize attribute coverage,
i.e., the set of attributes covered by at least one rule in Σ. However, it raises a problem of “long”
rules, that is, maximizing the attribute coverage implicitly encourages a large number of predicates
in a rule’s precondition, which may degrade interpretability in practice.
To rectify this, we propose attribute non-overlap. Informally, we sort rules in Σ as a sequence.

For the 𝑖-th rule 𝜑𝑖 in Σ, a rule is favored if it contains less or no attributes that exist in previous
𝑖 − 1 rules. Given a rule 𝜑 , let covA (𝜑) denote the set of attributes involved in 𝜑 . Then formally, we
define 𝛿nonAdiv (Σ) as follows:

𝛿nonAdiv (Σ) = −∑𝑘
𝑖=2

�� (⋃
𝑗<𝑖 covA (𝜑 𝑗)

)
∩ covA (𝜑𝑖)

��. (1)

The measure counts the total number of overlapped attribute between each REE 𝜑𝑖 and all previous
ones 𝜑 𝑗 with index 𝑗 < 𝑖 .

The measure 𝛿nonAdiv (Σ) turns out to be invariant to the order of rules in Σ. In other words, it is a
set function, i.e., 𝛿nonAdiv : 2Σall → R, a function whose domain is a collection of sets.
Proposition 1: The diversity measure 𝛿nonAdiv (Σ) is a set function. 2

Proof: This can be proved by double counting. Fix a rule set Σ. For each attribute 𝐴, its each occur-
rence increases the count by 1 except for the first occurrence. Thus, 𝛿nonAdiv (Σ) can be rewritten as

𝛿nonAdiv (Σ) = −
∑︁
𝐴

©­«
������∑︁𝜑∈Σ1[𝐴 contained in 𝜑] − 1

������ª®¬ ,
which is invariant to the order of rules in Σ. 2

Predicate non-overlap. We also define amore fine-grained notion of diversity forREEs𝜑 : 𝑋 → 𝑝0.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:10 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

We characterize predicate non-overlap by simply counting overlapped predicates:
𝛿nonPdiv (Σ) = −∑𝑘

𝑖=2
�� (⋃

𝑗<𝑖 covP (𝜑 𝑗)
)
∩ covP (𝜑𝑖)

��,
where covP (𝜑) = {𝑝 | 𝑝 ∈ 𝑋 } ∪ {𝑝0} is the set of predicates in 𝜑 .
Approximate non-overlap. The notions above treat syntactically different predicates/attributes as
independent ones. However, predicates and attributes are often semantically correlated, e.g., (1)
positive correlation, e.g., predicates 𝑡 .age > 18 and 𝑡 .age > 20; (2) negative correlation, e.g., 𝑡 .salary ≥
10K and 𝑡 .salary < 10K; (3) taxonomy, e.g., attributes city and county. Intuitively, we do not want
two rules to contain only semantically correlated predicates/attributes.
In light of this, we revise non-overlap to approximate non-overlap. Let Corr(𝐴𝑖 , 𝐴 𝑗) be the

strength of correlation between attributes 𝐴𝑖 and 𝐴 𝑗 (see more about Corr(·, ·) in [5]) and
Corr(𝑆𝑖 , 𝑆 𝑗) =

∑
𝐴𝑖 ∈𝑆𝑖 ,𝐴𝑗 ∈𝑆 𝑗

Corr(𝐴𝑖 , 𝐴 𝑗) between two attribute sets 𝑆𝑖 and 𝑆 𝑗 . Then, the revised
attribute non-overlap is defined as follows:

𝛿nonAdiv (Σ) = −∑𝑘
𝑖=2 Corr(

⋃
𝑗<𝑖 covA (𝜑 𝑗), covA (𝜑𝑖)) .

Similarly we define approximate non-overlap of predicates.
When the context is clear, we use 𝛿nondiv to denote 𝛿nonAdiv or 𝛿nonPdiv .

Tuple coverage. The notions of non-overlap aim to capture syntactic diversity in a rule set Σ, which
fall short in reducing structural redundancy specific in the dataset, e.g., two rules may be syntacti-
cally different but cover similar tuples. A natural remedy is to use rules that cover as many different
tuples as possible, which is arguably a better goal than maximizing the sum of individual supports.
Given an REE 𝜑 : 𝑋 → 𝑝0, we write covT (𝜑) = spset(𝜑,D) for the coverage of 𝜑 . Then, the

tuple coverage of Σ is defined as
𝛿covdiv (Σ) = |⋃𝜑∈Σ covT (𝜑) |.

Max-Min distance over attribute/predicate. Given a set Σ of rules, another approach to mea-
suring the diversity of Σ is to first define the pairwise distance between a pair of rules, and then
leverage the classic diversity models, such as Max-Min diversity [52].
Denote by dis(𝜑𝑖 , 𝜑 𝑗) the distance between rules 𝜑𝑖 and 𝜑 𝑗 , where dis() can be any distance

function, e.g., Jaccard Distance or Edit Distance for attributes. Then, diversity 𝛿disdiv (Σ) is defined as
𝛿disdiv (Σ) = min

𝜑𝑖 ,𝜑 𝑗 ∈Σ:𝑖≠𝑗
dis(𝜑𝑖 , 𝜑 𝑗).

This notion of diversity is especially useful when relevance depends mostly on a small number
of essential attributes or predicates. In this case, 𝛿nonAdiv (·) given above may not be very helpful, as
all essential attributes are likely to appear in Σ for any top-𝑘 rules.
Remark.Maximizing 𝛿disdiv (·) may also lead to “long rules”, since a rule that includes many un-selected
attributes is more distant from the rest. An easy fix is to select rules of a bounded length.
Example 5: To illustrate, consider the exact attribute non-overlap as an example. Consider Σ′ = {𝜑 ′

1,
𝜑d} and Σ = {𝜑1, 𝜑d}, where 𝜑d : Company(𝑡) ∧Company(𝑠) ∧ 𝑡 .reg_cap < 𝑠 .reg_cap → 𝑡 .cname
≠ 𝑠 .cname, and 𝜑 ′

1 and 𝜑1 are given in Examples 1-2. We compute 𝛿nonAdiv (Σ′) as −|covA (𝜑 ′
1) ∩

covA (𝜑d) | = −|{cname, type, cid} ∩ {reg_cap, cname}| = −|{cname}| = −1. Similarly, 𝛿nonAdiv (Σ) =
−|covA (𝜑 ′

1) ∩ covA (𝜑d) | = 0. Thus, Σ is more diverse than Σ′. 2

3.3 The Discovery Problem
We aim to discover rules that are as relevant to users’ need as possible, and at the same time, as
diverse as possible. Based on relevance 𝛿rel (·) and diversity 𝛿div (·) measures given earlier, we define
the bi-criteria objective function 𝐹 (·) on a set Σ of rules:

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:11

𝐹 (Σ) = 𝜆
∑︁
𝜑∈Σ

𝛿rel (𝜑) + (1 − 𝜆) · 𝛿div (Σ),

where 𝜆 ∈ [0, 1], set by users, is a configurable parameter for the trade-off between relevance
and diversity. We normalize 𝐹 (·) to a range of [0, 1]. The normalization is straightforward for all
non-negative measures, while negative measures can be turned into a non-negative one by adding
a proper positive constant.
Problem statement (TopKDiv).We now state the top-𝑘 relevant and diversified REE discovery
problem, referred to as TopKDiv.
◦ Input: Schema R, instance D of R, a positive integer 𝑘 , relevance measure 𝛿rel (), diversity
measure 𝛿div (), parameters 𝜆, 𝜎 and 𝜂.

◦ Output: A set of REEs Σ ⊆ Σall such that (1) |Σ| = 𝑘 and (2) 𝐹 (Σ) is maximized, i.e., Σ =

arg maxΣ′⊆Σall, |Σ′ |=𝑘 𝐹 (Σ′).
Here Σall is the set of all valid (𝜎-frequent and 𝜂-confident) REEs.
New paradigm. (1) Note that conventional rule discovery is a special case of TopKDiv that finds
all rules with only support/confidence measures. Top-𝑘 rule discovery [36] is also a special case
without diversity (𝜆 = 1). (2) As a framework, users may opt to provide their own functions for
relevance 𝛿rel () and diversity 𝛿div (), even a combination of multiple measures. Based on 𝐹 (Σ)
defined with 𝛿rel () and 𝛿div (), TopKDiv aims to find top-𝑘 relevant and diversified rules.
Complexity. No matter how desirable, TopKDiv is nontrivial. Recall that an algorithm is 𝛼-
approximation for some 𝛼 ∈ [0, 1] if it always returns a solution whose objective value is at
least 𝛼 fraction of the optimum for a maximization problem (see [5] for proof).
Theorem 2: The TopKDiv problem is NP-complete for all the four diversity measures. Furthermore,
unless P = NP, for measure 𝛿covdiv (·), it cannot be approximated beyond a factor of 1 − 1/𝑒 ; for measure
𝛿disdiv (·), it cannot be approximated beyond a factor of 1/2. 2

Proof sketch: An NP algorithm simply guesses a set Σ of 𝑘 REEs and checks whether 𝐹 (Σ) ≤ 𝑐

for a predefined bound 𝑐 , in PTIME. We show that TopKDiv is NP-hard by reduction from the
IndependentSet (IS) problem, the maximum 𝑘-cover problem and the Clique problem when 𝛿div is
𝛿nondiv , 𝛿

cov
div and 𝛿disdiv, respectively (see [5] for reductions). These problems are NP-complete (cf. [48]).

We show that for 𝛿covdiv (·), it cannot be approximated beyond a factor of 1 − 1/𝑒 . Consider w.l.o.g.
rules with a single predicate. Our reduction creates a single-variable predicate 𝑝𝑆 for each subset 𝑆
in 𝑘-cover, and a tuple 𝑡𝑢 for each element 𝑢 in 𝑘-cover. Then, a tuple 𝑡𝑢 is covered by 𝑝𝑆 iff 𝑢 ∈ 𝑆

and the hardness of (1 − 1/𝑒)-approximation of the 𝑘-cover [42] directly transfers to TopKDiv.
We show that for 𝛿disdiv (·), it cannot be approximated beyond a factor of 1/2. Our reduction maps

every vertex in Clique to a unique REE in Σall, and a 1/2-metric over REEs as in [89] is devised for
graph connectivity in Clique. Thus, a 𝑘-clique exists iff the 𝛿disdiv (·) can take on a value of 2 instead
1, creating a 1/2 gap in approximation. 2

4 A Discovery Algorithm for TopKDiv
We next develop an algorithm, referred to as TopKDivMiner, to discover top-𝑘 relevant and diversi-
fied rules. In light of Theorem 2, it is beyond reach in practice to expect an efficient approximate
algorithm for TopKDiv. This said, we show that TopKDivMiner ensures approximation bounds
under certain conditions.
One might want to first mine all rules, and then pick the top-𝑘 ones based on 𝐹 (·). However,

as indicated in the proof of Theorem 2, the decision problem of TopKDiv is at least as hard as
problems that are notoriously hard [42] and require EXPTIME in 𝑘 for exact optimization. Thus,

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:12 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

we adopt a greedy approach, which is not only sound in theory but is also practical as verified by,
e.g., the widely-used MMR algorithm [21]. Here we develop a conceptual TopKDivMiner and defer
its pruning strategies to Section 5.
Algorithm. As shown in Algorithm 1, TopKDivMiner iteratively finds the best next 𝜑next REE
w.r.t. previous ones in the current partial top-𝑘 set Σ, to maximize score(𝜑next) = 𝐹 (Σ ∪ {𝜑next}) −
𝐹 (Σ). Function GreedyREE (Step 6) returns such an REE 𝜑next greedily. After 𝑘 calls of GreedyREE,
the set Σ of top-𝑘 REEs is returned.
Rule search. We generate candidate rules top-down. For each consequence 𝑝0, we start with an
empty precondition and gradually expand it by including predicates one by one. More specifically,
suppose that the candidate REE under consideration is 𝜑 : 𝑋 → 𝑝0, for which we maintain two
predicate sets: (1) Psel, the set of predicates selected to constitute 𝑋 ; and (2) Pre, the set of remaining
candidate predicates. We expand𝑋 with some predicate from Pre to make a new REE (Step 39). Here
predicates in Pre can be processed in different orders, e.g., predicates that can constitute high score
rules (resp. have high supports) are processed first to get highly ranked REEs (resp. 𝜎-frequent REEs)
early. Note that a rule needs to be expanded only if it survives our pruning (see below for pruning).
Instead of searching the entire rule space for 𝜑next in every iteration (the outer while loop

at Step 5), TopKDivMiner maintains a search boundary, and expands every rule at most once.
Intuitively, the boundary is a set B of rules such that any 𝜑 is in one of the following three cases:
(a) 𝜑 is on the boundary, i.e., 𝜑 ∈ B; (b) 𝜑 is within the boundary, i.e., 𝜑 ≺ 𝜑 ′ for some 𝜑 ′ ∈ B,
which indicates that 𝜑 has been visited before; and (c) 𝜑 is outside the boundary, i.e., 𝜑 ′ ≺ 𝜑 for
some 𝜑 ′ ∈ B and thus, 𝜑 has not been visited yet.
More specifically, we maintain four subsets of rules in the boundary B: (a) Qpast, the rules that

are promising but need no further expansion; (b) Qrm, the rules that can be pruned completely
and need no further expansion; (c) Qnext, the rules that can be pruned only for the current iteration
and may be expanded in later iterations; and (d) Q, the rules that have not yet been examined.
In the current iteration, rules in Q will all be examined until it is empty, and the other rules within
the boundary are invalid and need not be examined for a second time. Thus, the next iteration
can continue the search from the current boundary outwards by letting Q := Qnext.

Within a call to function GreedyREE, rules kept in Qpast ∪ Q are sequentially processed. Shorter
rules are prioritized for minimality (Step 16). Note that there may be newly expanded rules that are
added into Q. For each rule 𝜑 to be processed, TopKDivMiner conducts two types of tests to decide
whether 𝜑 can be pruned (a) by the anti-monotonicity (Step 18), and (b) due to a low score (Steps 9
and 35). If a candidate 𝜑 survives both tests, it will be expanded to produce new REEs (Step 39).
Pruning. TopKDivMiner develops score-based pruning and multiple optimization strategies. The
score of a rule is compared with two yardsticks: (1) scoremax, which keeps track of the score of
the best rule that is seen so far in the current round; any rule whose upper bound UB is below
scoremax can be safely pruned for the current round; and (2) LBlazy (𝜑𝑖 | Σ), where 𝑖 = 𝑘 − |Σ| is
the number of rounds ahead, and 𝜑𝑖 is the 𝑖-th rule at the search boundary by descending lower
bound LBlazy (· | Σ); this records a lower bound of scores of the top-𝑘 rules among rules only from
the search boundary. Any rule whose upper bound UBlazy is below this lower bound cannot get
into the final top-𝑘 . The bounds are also used to skip the actual computation of scores, which is
also known as lazy evaluation (Step 23). We defer the details about these bounds to Section 5.
Example 6: Suppose 𝑘 = 3, 𝜆 = 0.5 and Pall = {𝑝cname, 𝑝type, 𝑝org, 𝑝est, 𝑝USCC, 𝑝

2015
𝑡 .est, 𝑝

2015
𝑠.est, 𝑝cid},

where 𝑝𝐴 (resp. 𝑝2015
𝑡 .est) is 𝑡 .𝐴 = 𝑠 .𝐴 (resp. 𝑡 .est > 2015) and org is the organization code [4] (not shown

in schema). We fix 𝑝cid as consequences, assuming 𝜑k : 𝑝≈cname∧𝑝type → 𝑝cid is known, where 𝑝≈cname
compares similar names. We use attribute non-overlap (resp. Mrel) for diversity (resp. relevance).

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:13

Algorithm 1: Algorithm TopKDivMiner
Input: D, 𝑘 , 𝛿rel (·), 𝛿div (·), 𝜆, 𝜎 and 𝜂.
Output: A set Σ of REEs s.t. |Σ| = 𝑘 and 𝐹 (Σ) is maximized

1 Σ := ∅
2 Initialize empty queues Q, Qpast and Qrm

3 Pall := the set of all predicates to be considered, with a fixed order
4 Psel := ∅; Pre := Pall; Q .add(⟨Psel, Pre, 𝑝0⟩) for each 𝑝0 ∈ Pall
5 while |Σ| < 𝑘 do
6 ⟨𝜑next,Qnext⟩ := GreedyREE(Σ,Q,Qpast,Qrm)
7 Σ := Σ ∪ {𝜑next}; Q := Qnext; 𝑖 := 𝑘 − |Σ|
8 𝜑𝑖 := the 𝑖-th valid rule in Qpast by descending LBlazy (· | Σ)
9 Remove 𝜑 ′ ∈ Qpast s.t. UBlazy (𝜑 ′) ≤ LBlazy (𝜑𝑖 | Σ) and 𝜑 ′ ∈ Q s.t.

𝜆UBrel (𝜑 ′) + (1 − 𝜆) · UBlazydiv (𝜑 ′) ≤ LBlazy (𝜑𝑖 | Σ)
10 Add removed 𝜑 ′ into Qrm

11 return Σ

12 Function GreedyREE (Σ,Q,Qpast,Qrm):
Output: The REE with the maximum marginal gain w.r.t. Σ

13 scoremax = −∞; Q′
past := Qpast

14 Initialize an empty queue Qnext

15 while Q ≠ ∅ or Qpast ≠ ∅ do
16 Pop Q ∪ Qpast \ Σ to obtain ⟨Psel, Pre, 𝑝0⟩, smaller Psel first
17 𝜑 := Psel → 𝑝0
18 if 𝜑 ′ ⪯ 𝜑 for any 𝜑 ′ ∈ Q′

past ∪ Qrm then
19 continue
20 if 𝜑 ′ ⪯ 𝜑 for any 𝜑 ′ ∈ Qnext then
21 Qnext .add(⟨Psel, Pre, 𝑝0⟩)
22 continue
23 if UBlazy (𝜑) > scoremax then // See Eq. 2
24 score := 𝜆𝛿rel (𝜑) + (1 − 𝜆) · (𝛿div (Σ ∪ {𝜑}) − 𝛿div (Σ))
25 if score > scoremax and 𝜑 is valid then
26 scoremax := score; 𝜑next := 𝜑

27 if 𝜑 is popped from Qpast then
28 continue
29 if 𝜑 is not 𝜎-frequent then
30 Qrm .add(⟨Psel, Pre, 𝑝0⟩)
31 continue
32 if 𝜑 is valid then
33 Q′

past .add(⟨Psel, Pre, 𝑝0⟩)
34 continue

35 if 𝜆UBrel (𝜑) + (1 − 𝜆) · UBlazydiv (𝜑) ≤ scoremax or UB(𝜑 | Σ) ≤ scoremax then
36 Qnext .add(⟨Psel, Pre, 𝑝0⟩) // Unexpanded rules

37 continue // Early termination

38 for 𝑝 ∈ Pre do
39 Q .add(⟨Psel ∪ {𝑝}, Pre \ {𝑝′ | id𝑝′ ≤ id𝑝 }, 𝑝0⟩)
40 Qpast := Q′

past
41 return 𝜑next,Qnext

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:14 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

Itr Rule (𝜑) 𝛿rel (𝜑) 𝛿div (𝜑 | Σ) score(𝜑)

1
𝜑4 : 𝑝org → 𝑝cid 0.5 0.5 1

𝑝name → 𝑝cid or 𝑝type → 𝑝cid 0 0.5 0.5
other singleton rules 0.4 0.5 0.9

2

𝜑5 : 𝑝USCC ∧ 𝑝est → 𝑝cid 0.3 0.4 0.7
𝜑6 : 𝑝cname ∧ 𝑝est → 𝑝cid 0.2 0.4 0.6

𝜑1 : 𝑝USCC ∧ 𝑝2015
𝑡 .est ∧ 𝑝2015

𝑠.est → 𝑝cid 0.4 0.4 0.8
𝜑 ′

1 : 𝑝cname ∧ 𝑝type → 𝑝cid 0 0.4 0.4

3
𝜑5 : 𝑝USCC ∧ 𝑝est → 𝑝cid 0.3 0 0.3
𝜑6 : 𝑝cname ∧ 𝑝est → 𝑝cid 0.2 0.3 0.5
𝜑 ′

1 : 𝑝cname ∧ 𝑝type → 𝑝cid 0 0.4 0.4
Table 3. An algorithmic example

Denote the improvement of (normalized) diversity (resp. relevance) after adding 𝜑 to Σ by
𝛿div (𝜑 | Σ) = 𝛿div (Σ ∪ {𝜑}) − 𝛿div (Σ) (resp. 𝛿rel (𝜑)). We conduct levelwise search, starting from
∅ → 𝑝cid. Suppose rules 𝜑 = 𝑝 → 𝑝cid, where 𝑝 ∈ Pall \ {𝑝cid}, are added to Q and processed in
order. Suppose only 𝜑4 = 𝑝org → 𝑝cid is valid, i.e., it needs no expansion; we add it to Qpast. Assume
other REEs have lower scores (upper bounds) than score(𝜑4) (shown in Table 3). Then they are
pruned and added to Qnext. When Q is empty, we return Σ = {𝜑4} in the 1st iteration (marked
in yellow). At the end of the 1st iteration, the boundary B consists of all singleton rules.

The 2nd iteration begins with Q := Qnext and rules in Qpast ∪Q are processed. Suppose that after
expansion, we have 𝜑5 = 𝑝USCC ∧ 𝑝est → 𝑝cid, 𝜑6 = 𝑝cname ∧ 𝑝est → 𝑝cid, 𝜑 ′

1 and 𝜑1, where 𝜑 ′
1 and

𝜑1 are given in Example 1, all are valid and added to Qpast. We examine their relevance/diversity, to
decide the next rules for Σ. Note that the diversity improvement after adding either of the four is the
same since they do no overlap 𝜑4 (except 𝑝cid). However, the relevance of 𝜑 ′

1 is lower than the others,
since it is “homogeneous” to 𝜑k. Let 𝜑1 have the highest relevance. We then compute Σ = {𝜑4, 𝜑1}.

In the 3rd iteration, the next rule is selected as follows. Consider the three remaining candidates𝜑 ′
1,

𝜑5 and𝜑6 inQpast. Since𝜑5 and𝜑1 ∈ Σ involve the same attributes, adding𝜑5 to Σmakes it undiverse.
Combining this with the fact above that 𝜑 ′

1 is irrelevant, we thus add 𝜑6 to Σ and finally, Σ =

{𝜑4, 𝜑1, 𝜑6}. In contrast, if we select rules based on relevance alone, wemay add𝜑5, rather than𝜑6. 2
Complexity. TopKDivMiner takes at most O(∑𝜑∈𝐶 (Pall)×Pall Trel (𝜑)+𝑘 Tdiv (𝜑)) time, where C(Pall) is
the power set of Pall, Trel (·) (resp. Tdiv (·)) is the time for computing relevance (resp. diversity). Let |𝜑 |
be the number of predicates in 𝜑 , and |D| be the number of tuples. Typically, Trel (𝜑) = O(|𝜑 | |D|),
and Tdiv (𝜑) = O(|𝜑 |) for non-overlap. For other diversity measures, Tdiv (𝜑)may increase toO(𝑘 |𝜑 |)
for Max-Min Jaccard diversity or even O(|𝜑 | |D|) for tuple coverage. Note that this is the worst-case
complexity; in practice our algorithm is much faster by pruning and optimization (Section 5).
Guarantees. When 𝛿div (·) is 𝛿nondiv , it is beyond reach to expect an approximation bound for
TopKDivMiner; as shown in Theorem 2, TopKDiv is as hard as the Independent Set problem,
which has been shown to refuse any nontrivial approximation [53]. However, for other diversity
measures, there exist worst-case guarantees.
Theorem3:When equipped with a non-negativemodular relevancemeasure 𝛿rel (·) and the tuple cover-
age diversity 𝛿covdiv , TopKDivMiner yields a (1−1/𝑒)-approximation bound for the TopKDiv problem. 2

Proof sketch: As a sum of modular relevance 𝛿rel and a submodular coverage function, the
objective function remains a submodular function. Then a greedy algorithm like TopKDivMiner
optimally maximizes such a function with (1 − 1/𝑒)-approximation [77]. 2

Theorem 4: With a non-negative modular relevance measure 𝛿rel (·) and the Max-Min diversity 𝛿disdiv,
by running TopKDivMiner twice and returning the best solution, one can obtain 4-approximation. 2

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:15

Proof sketch: The bound is achieved by running TopKDivMiner twice, with 𝜆 = 1 and 𝜆 = 0,
which provably optimizes 𝛿rel and 𝛿disdiv, respectively. The best of these two runs maintains a global
4-approximation guarantee by simple calculation (see [5]). 2

5 Optimization Strategies
In this section we develop practical pruning and optimization techniques to help early termination
of TopKDivMiner. We divide the pruning strategies into those within one iteration (Section 5.1),
i.e., a call to the function GreedyREE, and those across iterations (Section 5.2). We also develop opti-
mization strategies for tuple coverage and parallelization with performance guarantee (Section 5.3).

5.1 Pruning within One Greedy Iteration
Recall that our rule discovery is conducted in a top-down manner. During the top-down rule
expansion in each greedy iteration, we prune future unseen REEs that are unlikely to become the
best REE in the current iteration, which reduces the search space.
Given a partial top-𝑘 set Σ, we hope to find the next best REE 𝜑next that maximizes marginal

score(𝜑next) = 𝐹 (Σ ∪ {𝜑next}) − 𝐹 (Σ). The idea in our pruning strategies is to compute an upper
bound UB for any given REE candidate 𝜑 , such that the marginal score of any expanded REE from
𝜑 is no more than UB. That is, UB(𝜑 | Σ) ≥ max𝜑⪯𝜑 ′ score(𝜑 ′). We maintain the best REE seen so
far in the current iteration, and if its marginal score is at least UB(𝜑 | Σ), we can safely skip 𝜑 and
any expanded REE from 𝜑 in this iteration.
Like the objective function 𝐹 , the upper bound UB is composed of upper bounds UBrel for

relevance and UBdiv for diversity, i.e.,
UB(𝜑 | Σ) = 𝜆 · UBrel (𝜑) + (1 − 𝜆) · UBdiv (𝜑 | Σ), where
UBrel (𝜑) ≥ max

𝜑⪯𝜑 ′
𝛿rel (𝜑 ′), UBdiv (𝜑 | Σ) ≥ max

𝜑⪯𝜑 ′
𝛿div (𝜑 ′ | Σ).

Here 𝛿div (𝜑 | Σ) = 𝛿div (Σ ∪ {𝜑}) − 𝛿div (Σ) is the marginal gain in diversity. We now show how
to compute UB(𝜑 | Σ) for each measure.
[P1] Relevance (support). Adding predicates to the precondition of a rule 𝜑 does not increase its
support by the anti-monotonicity, i.e., supp(𝜑 ′,D) ≤ supp(𝜑,D) for any 𝜑 ′ ⪰ 𝜑 . Thus, the support
of 𝜑 can be directly used as an upper bound, i.e., UBrel (𝜑) = supp(𝜑,D).
[P2] Relevance (confidence). The confidence is within [0, 1], but is neither monotonic nor anti-
monotonic. Thus we set UBrel (𝜑) = 1.
[P3] Relevance (model).We can use the learned UBL as an upper bound on relevance scoreMrel (·).
Thus UBrel (·) = UBL for REE 𝜑 .
[P4] Diversity (non-overlap). Expanding the precondition of an REE 𝜑 with more predicates will
only increase the overlap with previous REEs in Σ, and decrease the non-overlap measure. Thus,
the upper bound UBdiv is set as UBdiv (𝜑 | Σ) = 𝛿div (𝜑 | Σ).
[P5] Diversity (tuple coverage). Similar to the notion of support, one can verify that tuple coverage
is also anti-monotonic. Therefore, the upper bound UBdiv is simply UBdiv (𝜑 | Σ) = 𝛿div (𝜑 | Σ).
[P6] Diversity (Max-Min distance). The Max-Min measure is nonincreasing in an REE set, i.e.,
𝛿div (Σ) ≥ 𝛿div (Σ′) for any Σ′ ⊇ Σ. Thus, the marginal gain of any rule 𝜑 must be non-positive, and
one could set UBdiv (·) = 0. A tighter upper bound is UBdiv (𝜑 | Σ) = max𝜑 ′∈Σall 𝛿div (Σ ∪ {𝜑 ′}) −
𝛿div (Σ), which is equivalent to the farthest string problem if we adopt the edit distance as the
metric [64]. More specifically, an REE 𝜑 can be seen as a 0/1 string of length |Pall |, where each 1
indicates the appearance of one predicate in 𝜑 .

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:16 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

If multiple measures are used in 𝛿rel together by summation, a sum of their bounds serves as
a new bound of 𝛿rel; similarly for 𝛿div.

5.2 Pruning across Greedy Iterations
To prune across greedy iterations, we study upper and lower bounds of 𝛿div (𝜑 | Σ) that will hold
despite changes to 𝜑 and Σ. In contrast, the bounds in Section 5.1 hold only for a fix partial rule set Σ.
We adapt a lazy evaluation acceleration technique to rule discovery, which has been studied

for submodular maximization [75]. In TopKDivMiner, every time the current partial REE set Σ is
updated, the marginal gain of all the other REEs 𝜑 in the diversity measures, i.e., 𝛿div (𝜑 | Σ), may
change and need updating. This incurs excessive computation. The original idea of lazy evaluation
is to skip such updates whenever possible. Below we not only leverage this acceleration technique
to reduce unnecessary computation, but also extend it further for pruning across greedy iterations.
Upper bounds. Lazy evaluation works well when the measure presents a “diminishing returns”
property. That is, as the partial set Σ grows, the marginal gain of any rule 𝜑 is nonincreasing. An
example for this property is tuple coverage; as more rules are added to Σ, the marginal coverage
of a rule 𝜑 never increases. That is, 𝛿div (𝜑 | Σ) ≥ 𝛿div (𝜑 | Σ′) for any Σ′ ⊇ Σ. In light of this, the
marginal gain 𝛿div (𝜑 | Σprev) of 𝜑 from any previous greedy iteration such that Σprev ⊆ Σ can be
directly used as an upper bound UBlazy

div . Thus let
UBlazy (𝜑) = 𝜆 · 𝛿rel (𝜑) + (1 − 𝜆) · UBlazy

div (𝜑) (2)
be an upper bound on the marginal score of 𝜑 . If UBlazy (𝜑) is no greater than that of the best candi-
date REE seen so far in the current iteration, there is no need to evaluate the true gain 𝛿div (𝜑 | Σ) of𝜑 .

A nonincreasing measure also goes along with the lazy evaluation technique, as the marginal gain
of any 𝜑 is non-positive, and one can simply let UBlazy (𝜑) = 𝜆𝛿rel (𝜑). That is, we set UBlazy

div (𝜑) = 0.
It is easy to see that all diversity measures we propose in Section 3.2 satisfy one of the aforemen-

tioned properties.
Proposition 5: The non-overlap, tuple coverage measures satisfy the “diminishing returns” property
w.r.t. the partial rule set Σ, while the Max-Min distance measure is nonincreasing in Σ. 2

Proof: Coverage functions are examples for the “diminishing returns” property, and thus it is true
for the tuple coverage measure. The case for the Max-Min distance is also obvious by definition.
As for the non-overlap measure, we demonstrate with attribute non-overlap; similarly for

predicate non-overlap. When more rules are added to Σ, the total number of attributes involved
in Σ is nondecreasing, and so is the overlap of a new 𝜑 with Σ. As the marginal gain of 𝜑 is the
negation of its overlap, it is nonincreasing. 2

Lower bounds. By symmetry, a lower bound LBlazy of a rule 𝜑 is:
LBlazy (𝜑 | Σ) = 𝜆 · 𝛿rel (𝜑) + (1 − 𝜆) · LBlazy

div (𝜑 | Σ), (3)
where LBlazy

div (𝜑 | Σ) ≤ 𝛿div (𝜑 | Σ′) for any Σ′ ⊇ Σ. Note that we make the conditioned Σ explicit as
the lower bound is used only for pruning, not for lazy evaluation. Some options for LBlazy

div are:
◦ attribute non-overlap: LBlazy

div (𝜑 | Σ) = −2|𝜑 |,
◦ predicate non-overlap: LBlazy

div (𝜑 | Σ) = −|𝜑 |,
◦ tuple coverage: LBlazy

div (𝜑 | Σ) = 0, and
◦ Max-Min edit/Jaccard distance: LBlazy

div (𝜑 | Σ) = −𝛿disdiv (Σ).
Here |𝜑 | is the length of the REE 𝜑 . Most bounds above are straightforward, and thus we briefly
explain the last one. The Max-Min measure may drop to zero among distinct rules, because it is
possible for two distinct rules to use the same set of attributes. This is also true over predicates, as two

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:17

distinct rules may use the same set of predicates with different predicates being their consequences.
Pruning across iterations. Note that UBlazy

div differs from UBdiv above; the former holds w.r.t. a
varying Σ, i.e., UBlazy

div (𝜑) ≥ 𝛿div (𝜑 | Σ′) for any future partial set Σ′ ⊇ Σ, while the latter holds w.r.t.
a varying 𝜑 , i.e., UBdiv (𝜑 | Σ) ≥ 𝛿div (𝜑 ′ | Σ) for any expanded rule 𝜑 ′ ⪰ 𝜑 . This said, it happens
to be the case that all UBlazy

div ’s we propose are also valid for UBdiv, i.e., UBlazy
div (𝜑) ≥ UBdiv (𝜑 | Σ).

In other words, UBlazy
div holds w.r.t. varying 𝜑 and Σ simultaneously; as a consequence, we can use

UBlazy
div for cross-iteration pruning.
Given a partial set Σ, the idea of cross-iteration pruning is to maintain a lower bound LB on the

contribution of the next 𝑘 − |Σ| rules to be added to Σ. Let 𝑖 = 𝑘 − |Σ|. We set LB to be LBlazy (𝜑𝑖 | Σ),
where 𝜑𝑖 is the 𝑖-th rule among valid candidates that have been explored by descending LBlazy (· | Σ).
Then, a rule 𝜑 and its unseen derivatives can be repeatedly pruned as long as UBlazy

div (𝜑) ≤ LB.

5.3 More Optimizations
We develop strategies for tuple coverage and parallelization. For the lack of space, we give outlines
below and defer the details to [5].
Fast Tuple Coverage Computation. Tuple coverage poses computational challenges to REE
discovery. Given a partial set Σ, an inevitable step for it is to compute the marginal coverage
covT (𝜑 | Σ) of another rule𝜑 , where covT (𝜑 | Σ) = covT (𝜑)\covT (Σ), and covT (Σ) = ∪𝜑 ′∈ΣcovT (𝜑 ′).
Recall that the coverage of an REE with a binary consequence is defined over the space of tuple
pairs, which takes quadratic time in the number of tuples and is costly. Thus we want to avoid
materializing tuple pairs when computing the union coverage of Σ and its intersection with that of
𝜑 . We devise a fast unbiased estimation for |covT (𝜑 | Σ) | via Monte-Carlo sampling.
Parallelization of the Algorithm. To scale with large datasets, we parallelize TopKDivMiner to
be PTopKDivMiner.
Following [62], we measure the effectiveness of parallel algorithms A𝑝 using the notion of

parallel scalability. We say that A𝑝 is parallelly scalable relative to a sequential algorithm A if
its worst-case running time 𝑇 (𝑛) by using 𝑝 processors can be expressed as:

𝑇 (𝑛) = O(𝑡 (𝑛)/𝑝) + 𝑝O(1) ,
where 𝑡 (𝑛) is the worst-case running time of A. Here the problem instance size 𝑛 includes the size
|D| of datasets and the number of predicates (|Pall |), the dominating factors of problem TopKDiv.
Theorem 6: PTopKDivMiner is parallelly scalable relative to sequential TopKDivMiner. 2

6 Experimental Study
Using real-life data, we experimentally evaluated (1) the (parallel) scalability of our algorithm for
discovering top-𝑘 relevant and diversified REEs, and the effectiveness of (2) our relevance model
and (3) diversity measures, and (4) our bi-criteria objective function.
Experimental setting. We start with our experimental settings.
Datasets.We used six real-life datasetsD (Table 4):Adult,Airport,Hospital, Inspection andNCVoter
are commonly used in previous studies, and DBLP is an academic dataset with multiple relations.
Note that rule discovery was conducted on the entire dataset D.
For each D, we sampled 20K tuples of D, denoted by Ddirty. We cleaned Ddirty by the

state-of-the-art method Holoclean [91] and got another set Dclean. Here Ddirty and Dclean were
used to train the relevance modelMrel. In addition, we evaluated the quality of the REEs discovered
by manually inspecting the real errors in Dclean caught by the rules. We used small sampled

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:18 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

Name Type #tuples #attributes #relations
Adult [61, 70, 83] real-life 32,561 15 1
Airport [70, 83] real-life 55,113 18 1

Hospital [17, 26, 70] real-life 114,919 15 1
Inspection [70, 91] real-life 220,940 17 1
NCVoter [70, 83] real-life 1,681,617 12 1

DBLP [104] real-life 1,799,559 18 3
Table 4. Dataset statistic

Dclean such that we could manually confirm real errors in it. Intuitively, we assumed that the
errors corrected by Holoclean in Dclean are already known. The errors caught in Dclean are
unknown/surprising to the users.
ML models. We used two ML predicates in REEs: ditto [67] for ER, and Bert [90] for textual
attributes. For our relevance model Mrel, we utilized PyTorch-BigGraph [66] to initialize predicate
embeddings and set the size to 100. Predicate embeddings are also learned during training. We used
2 hidden layers and set their dimension to 100. We employed Adam optimizer with a batch-size
of 128; the learning rate is 0.001. The default error measure is 𝐺2, following the setting in [38].
To trainMrel, we limited the maximum number of rules mined on Ddirty to be 1,000, from which
we randomly selected 1, 000 rule pairs. The rule pairs were divided into training and testing data
with 8:2 ratio. We trainedMrel with 400 epochs on training data, and evaluated it on testing data.
The inference of Mrel in discovery is re-implemented with EJML library [1].
Baselines.We implemented PTopKDivMiner in Java; it adopts support, confidence,Mrel and the com-
bination of all diversity measures in Section 3. We tested: (1) PTopk-Miner [36], a top-𝑘 rule discov-
ery method, which has its own relevance model and does not consider diversity. (2) REEFinder [35],
an exhaustive method that discovers the entire set Σall of REEs. (3) DCFinder [26], the state-of-the-
art method that mines all DCs; we parallelize it for a fair comparison. (4) Random, which randomly
returns 𝑘 rules from Σall.
We also evaluated the following variants: (4) PTopKDivMinerAN, PTopKDivMinerPN,

PTopKDivMinerAD, PTopKDivMinerTC, four variants of PTopKDivMiner that only use at-
tribute non-overlap, predicate non-overlap, max-min attribute distance and tuple coverage as the
diversity measure, respectively. (5) PTopKDivMinerNoDiv (resp. PTopKDivMinerNoRel), a variant
that does not apply any diversity (resp. relevance) measure. Note that PTopKDivMinerNoDiv does
not need to update the diversity scores of REEs at each greedy iteration; it can return top-𝑘 rules in
one iteration, by maintaining a heap on relevance scores. (6) PTopKDivMinernop, a variant without
any pruning strategy, i.e., it mines all rules and greedily returns the top-𝑘 . We compared with
the variants in (4), (5) and (6) to verify the effect of each diversity measure, to justify the need
for both relevance and diversity, and testing the pruning strategies, respectively.
Moreover, to test the accuracy of our relevance model Mrel we compared: (1) Bert [30], a

language model (distilbert-base-uncased) fine-tuned to compare rule relevance, (2) Msub [36],
the subjective model in PTopk-Miner, (3) MBert

rel , a variant of Mrel with predicate embeddings
initialized by Bert [30], (4) M𝐺1

rel and (5) M𝐺3
rel , two variants of Mrel that use 𝐺1 and 𝐺3 as the error

measure, respectively.
Metrics. For each method, we evaluated its scalability by the discovery time on D and the
effectiveness by both the relevance/diversity scores and the accuracy of (unknown) error detection.
Consider a set Σ of 𝑘 rules returned by a method and the entire set Σall from D.
(1) We evaluated Σ by normalized relevance and diversity scores, computed as 𝐹rel =

∑
𝜑∈Σ Mrel (𝜑)

and 𝐹div = 𝛿nonAdiv (Σ) + 𝛿nonPdiv (Σ) + 𝛿covdiv (Σ) + 𝛿disdiv (Σ) (i.e., all diversity measures), respectively.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:19

(2) To evaluate the practical effectiveness of our relevance and diversity measures, we examined the
errors detected in the following three ways. Denote by Vio(Σ) (resp. Vio(𝜑)) the set of all errors
caught as the violations of all rules in Σ (resp. a single rule 𝜑).
(2a) Real errors in Dclean in terms of Precision, Recall and F1 defined as 2 · Precision ·
Recall/(Precision + Recall), where Precision (resp. Recall) is the ratio of detected real errors to
all the violations of REEs in Σ (resp. all real errors). Intuitively, the more unknown errors detected
in Dclean, the more relevant the rules are.
(2b) Error coverage inDclean, i.e., the ratio of violations of rules in the top-𝑘 set Σ to the violations of
the set Σall of all rules, denoted by ECratio =

|Vio(Σ) |
|Vio(Σall) | . Intuitively, errors caught by homogeneous

rules tend to coincide. In contrast, an effective diversity measure promotes diverse top-𝑘 rules,
which should be able detect different cases of errors compared to those caught by the entire set Σall.
(2c) Error dissimilarity in Dclean, i.e., the average Jaccard distance between the violations of every
distinct rule pair in Σ, denoted by JD = 1

|Σ | (|Σ |−1)
∑

𝜑𝑖 ,𝜑 𝑗 ∈Σ,𝜑𝑖≠𝜑 𝑗

(
1 − |Vio(𝜑𝑖)∩Vio(𝜑 𝑗) |

|Vio(𝜑𝑖)∪Vio(𝜑 𝑗) |
)
. Intuitively,

the more dissimilar the errors caught, the more diverse the rules are.
We also evaluated the usefulness of rules (i.e., whether they are relevant and diverse to real

users), by setting up 10 independent error detection tasks over five datasets; each task aims to
detect certain cases of errors, e.g., a task on Adult detects erroneous salary of users and another task
on Inspection detects a wrong level of risk. We report the average performance over these 10 tasks.
For each task, we mined three lists of top-10 REEs using (a) PTopKDivMiner, (b) PTopk-Miner and
(c) Random. We asked domain experts, who understand the purpose of the task, to give two sets of
labels, for evaluating the relevance and diversity of the rules, respectively.
(1) Relevance. The 30 rules (i.e., 10 from each list) are shuffled and presented to the experts. To
facilitate labeling, for each rule, we randomly selected 10 errors it detects and complemented
each rule with the errors. A rule was labeled 1 if the expert found the detected errors useful, e.g.,
unknown/surprising to the task. Then we compared the number of relevance labels received by
each method; the more labels a method receives, the more relevant the rules are.
(2) Diversity. We randomly selected 20 pairs of rules from each list, yielding 60 rule pairs in total.
These rule pairs are shuffled and presented to the experts. A rule pair was labeled 1 if the expert
found the errors detected by the two rules are dissimilar. The more labels a method receives, the
more diverse the rules are.
Configuration. We conducted experiments on a cluster of up to 21 virtual machines, each powered
by 64GB RAM and 16 processors with 2.20 GHz. We ran the experiments 3 times, and report the
average here. Unless stated explicitly, we set the number of machines 𝑛 = 20, the support threshold
𝜎 = 10−6 · |D|2, the confidence 𝜂 = 0.75, 𝑘 = 10 in top-𝑘 discovery, and the trade-off parameter 𝜆 = 1

3 .

Experimental results. We next report our findings. For the lack of space we show results on
some datasets; the others are consistent.
Exp-1: Scalability. We tested the scalability, varying the (1) value 𝑘 , (2) support 𝜎 , (3) confidence
𝜂, (4) the number 𝑛 of machines, (5) the size of D, (6) the size of |𝑋 | and (7) the diversity measures.
Varying 𝑘 . We varied 𝑘 from 1 to 40 in Figures 1(a) and 1(b). (1) REEFinder, DCFinder and
PTopKDivMinernop are not sensitive to 𝑘 , since they either mine all REEs/DCs, regardless of 𝑘 ,
or apply no pruning. In contrast, PTopKDivMiner takes much less time; on average, it is 62.4X,
51.5X and 15.02X faster than the three, respectively. This speedup is particularly evident when
𝑘 is small, e.g., it is 51.66X faster than PTopKDivMinernop when 𝑘 = 1, justifying the need of

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:20 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

REEFinder
DCFinder
PTopk-Miner

PTopKDivMiner
PTopKDivMinerNoRel
PTopKDivMinerNoDiv

PTopKDivMinernop
Random
PTopKDivMinerTC

Random
PTopk-Miner
PTopKDivMiner

PTopKDivMinerAN
PTopKDivMinerPN
PTopKDivMinerAD

PTopKDivMinerTC
PTopKDivMinerNoRel
PTopKDivMinerNoDiv

PTopKDivMinernoOptTC

OPT

1 10 20 30 40

102

103

104

R
un

ni
ng

T
im

e
(s

)

(a) Inspection: varying 𝑘 (time)

1 10 20 30 40

101

102

103

R
un

ni
ng

T
im

e
(s

)

(b) Hospital: varying 𝑘 (time)

10−1 10−2 10−4 10−6 10−8

102

103

104

R
un

ni
ng

T
im

e
(s

)

(c) Inspection: varying 𝜎 (time)

0.75 0.8 0.85 0.9 0.95

103

R
un

ni
ng

T
im

e
(s

)

(d) DBLP: varying 𝜂 (time)

4 8 12 16 20
102

103

104

R
un

ni
ng

T
im

e
(s

)

(e) NCVoter: varying 𝑛 (time)

20% 40% 60% 80% 100%

102

103

104

R
un

ni
ng

T
im

e
(s

)

(f) NCVoter: varying |D | (time)

1 2 3 4 5 6 7 8 9 10

101

102

103

104

R
un

ni
ng

T
im

e
(s

)

(g) Hospital: varying |𝑋 | (time)

103

104

R
u

n
n

in
g

T
im

e
(s

)

(h) Inspection: diversity

Airport Hospital Adult
0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Mrel

Bert
MBert

rel

Msub

MG1
rel

MG3
rel

(i) Accuracy of Mrel

20% 40% 60% 80% 100%
0.6

0.7

0.8

0.9

A
cc

ur
ac

y

MG1
rel

MG3
rel

Mrel

Bert
MBert

rel

Msub

(j) Adult: varying #training data

0% 5% 10% 15% 20%
0.6

0.7

0.8

0.9

A
cc

ur
ac

y

MG1
rel

MG3
rel

Mrel

Bert
MBert

rel

Msub

(k) Adult: varying error%

Hospital DBLP Airport
0.0

0.2

0.4

0.6

0.8

F
1
-s

co
re

(l) Real errors (F1)

1 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

(m) Hospital: varying 𝑘 (Recall)

0.0

0.2

0.4

0.6

0.8

E
rr

or
C

ov
er

ag
e

(n) Hospital: Error coverage

1 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
C

ov
er

ag
e

(o) Hospital: varying 𝑘 (ECratio)

0.0

0.2

0.4

0.6

0.8

E
rr

or
D

is
si

m
ila

ri
ty

(p) Hospital: Error dissimilarity

0.1 0.075 0.05 0.025
0.0

0.2

0.4

0.6

E
rr

or
D

is
si

m
ila

rit
y

Airport DBLP

(q) varying 𝜆 (JD)

Airport Inspection Adult
0.0

0.2

0.4

0.6

F
(·)

sc
or

e

(r) Evaluation score

Airport Inspection Adult Hospital
0.0

0.2

0.4

0.6

0.8

F
(·)

sc
or

e

(s) Optimality test

0.1 0.075 0.05 0.025

0.2

0.3

0.4

0.5

F
(·)

sc
or

e

Frel

Fdiv

(t) DBLP: varying 𝜆 (𝐹rel , 𝐹div)
Fig. 1. Performance evaluation

effective pruning strategies. (2) It is comparable to both its variants PTopKDivMinerNoDiv and
PTopKDivMinerNoRel, although it incorporates both relevance and diversity in discovery. In partic-
ular, the time of PTopKDivMinerNoDiv only increases slightly with 𝑘 since (a) it is a single-iteration
variant and (b) its top-𝑘 pruning with only relevance bounds is less effective, e.g., for all REEs 𝜑 , the
bounds on Mrel (𝜑) are the same (i.e., UBL). (3) PTopKDivMiner takes longer when 𝑘 gets larger,
as expected, since more REEs are checked. Although PTopKDivMiner is slower than PTopk-Miner,
its rules are both relevant and diverse, catching more (unknown) errors. We defer the discussion
about this to Exp-2 and Exp-3.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:21

Varying support. Decreasing 𝜎 from 10−1 |D|2 to 10−8 |D|2 in Figure 1(c), all algorithms take longer
when 𝜎 is smaller, as expected, since they need to examine more candidates, e.g., PTopKDivMiner
is 4.5X slower when 𝜎 changes from 10−1 |D|2 to 10−8 |D|2. Nevertheless, it is consistently faster
than PTopKDivMinernop, REEFinder and DCFinder in all cases, e.g., 9.08X, 55.51X and 47.24X
faster than the three on average, respectively, up to 22.87X, 72.25X and 63.14X.
Varying confidence. Increasing 𝜂 from 0.75 to 0.95 in Figure 1(d), most algorithms are faster given
a smaller 𝜂, e.g., PTopKDivMiner is 1.45X faster when 𝜂 is from 0.95 to 0.75. This is because higher
𝜂 requires to check more candidate REEs. Nonetheless, it still beats PTopKDivMinernop, REEFinder
and DCFinder in all the cases.
Varying 𝑛. Varying the number 𝑛 of machines from 4 to 20, we evaluated the parallel scalability of
PTopKDivMiner. As shown in Figure 1(e), PTopKDivMiner is 3.05X faster when 𝑛 varies from 4 to
20. It is feasible in practice; it takes 818s on NCVoter when 𝑛 = 20.
Varying |D|. Using NCVoter, one of the largest datasets with 1.68M tuples, we tested the impact of
the size |D| by varying the scaling factor from 20% to 100%, i.e., the number of tuples is changed
from 20% to 100%. As shown in Figure 1(f), all the algorithms take longer, as expected. This said,
PTopKDivMiner outperforms PTopKDivMinernop, REEFinder and DCFinder in all the cases.
Varying |𝑋 |. We varied the maximum number of predicates in 𝑋 in Figure 1(g). As shown there,
the post-processing approaches, e.g., PTopKDivMinernop that mines all rules and greedily returns
the top-𝑘 , exhibit a steep rise in time with increasing |𝑋 |, while the time of PTopKDivMiner only
increases slightly when |𝑋 | gets larger.
Diversity. We evaluated the impact of diversity measures on PTopKDivMiner, PTopKDivMinerNoDiv,
PTopKDivMinerAN, PTopKDivMinerPN, PTopKDivMinerAD and PTopKDivMinerTC. To evaluate the
optimization strategy for fast tuple coverage (see Section 5.3), we used an additional variant of
PTopKDivMinerTC, denoted by PTopKDivMinernoOptTC , without the optimization. As shown in Fig-
ure 1(h), (a) although PTopKDivMinerNoDiv only runs one iteration and other methods run 𝑘 greedy
iterations, incorporating diversity measures takes less time than PTopKDivMinerNoDiv (except
PTopKDivMinerAD), due to the effective upper bounds on all diversity measures. (b) By combining
all the diversity measures, PTopKDivMiner achieves the most significant speedup, since all upper
bounds are able to apply for pruning, e.g., PTopKDivMiner is 5.11X faster than PTopKDivMinerNoDiv.
(c) Among all diversity measures, max-min attribute distance is the slowest, since its upper bound
is not as tight as the others, which presents the “diminishing returns” property (Section 5.2). (d)
Our optimization for tuple coverage is effective, without which PTopKDivMinernoOptTC takes >10h.
Exp-2: Effectiveness of relevance model. We evaluated the accuracy of Mrel, based on the
metrics given above for relevance.
Accuracy of relevance. We first compared the accuracy of Mrel with Bert, Msub and its variants;
here the accuracy was measured by the percentage of rule pairs in testing data whose relative
rank is correctly identified. As shown in Figure 1(i), Mrel beats Bert and Msub on all datasets,
e.g., its accuracy is 9.72% and 2.77% higher than Bert and Msub on average, respectively, up to
10.9% and 4.43%. Besides, Mrel is on average 2.35% more accurate than MBert

rel ; this verifies the
usefulness of our data-dependent embedding strategy, which takes the underlying data regularity
into consideration. Moreover, the accuracy of Mrel is comparable to M𝐺1

rel and M𝐺3
rel , thereby

confirming that none of them can be unequivocally regarded as the best one.
Varying #training.We varied the number of training rule pairs for relevance models in Figure 1(j)
from 20% to 100%. As expected, all methods get more accurate given more training data, e.g., with

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:22 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

40% training pairs, the accuracy of Mrel is as high as 0.895, indicating that a medium-size training
set suffices to get reasonable accuracy.
Varying error%. We also tested the impact of the quality of training data. Given an error parameter
𝛽%, we randomly selected 𝛽% of training pairs and flipped their labels. Varying the 𝛽% from 0% to
20%, we reported the accuracy of all relevance models in Figure 1(k). With more erroneous labels,
the accuracy decreases, e.g., the accuracy of Mrel drops from 0.97 to 0.875. Nonetheless, Mrel is
more robust to errors than the other relevance models.
Accuracy of real error detection. We examined real errors in Dclean caught by rules of
PTopKDivMiner, PTopKDivMinerNoRel, PTopk-Miner and Random. As shown in Figure 1(l),
Random performs the worst since randomly selected rules can hardly fit the user’s need. In
contrast, PTopKDivMiner performs the best: its average F1 is 0.74, as opposed to 0.68 and 0.53
by PTopKDivMinerNoRel and PTopk-Miner, respectively. The advantage of PTopKDivMiner is
particularly evident on DBLP since the rules from PTopk-Miner only detect errors on a few
attributes (i.e., homogeneous rules), leading to low recall. Note that all methods have lower F1 on
Hospital. This is because Holoclean has done a better job on the dataset that has more duplicates
than the others, and it is harder to find errors missed.
We also tested the impact of quantity/quality of training data on real errors caught by

PTopKDivMiner, in the the same setting as in Figures 1(j)-1(k) (not shown). When the number of
training data changes from 20% to 100% on DBLP, F1 increases from 0.61 to 0.86. Moreover, when
𝛽% changes from 0% to 20% onHospital, F1 slightly drops by 0.07. This verifies that PTopKDivMiner
is also robust to errors and performs well with a reasonable amount of training data.
Statistical test on real error detection. To test whether the real error F1 of PTopKDivMiner is signifi-
cantly different from PTopk-Miner, we conducted Student’s 𝑡-test [79] with significance level as
0.05. We randomly drew 100 sample datasets D𝑠 from D, where each |D𝑠 | = 20%|D|. We mined
top-10 rules on each D𝑠 using PTopKDivMiner and PTopk-Miner and compute the corresponding
F1. The 𝑝-values are 2.7 × 10−6 and 1.82 × 10−7 on Hospital and Airport, respectively, justifying
the statistical difference between the two algorithms.
Varying 𝑘 (P/R). To illustrate better, we report Recall of real error detection, by varying 𝑘 from 1
to 30 in Figure 1(m). PTopKDivMiner consistently has higher Recall than all the baselines. Given a
larger 𝑘 , all methods are able to detect more real errors. However, since Precision is mainly impacted
by the accuracy of REEs, rather than the number of REEs, it is insensitive in most cases (not shown).
Usefulness. We compared the relevance labels for PTopKDivMiner, PTopk-Miner and Random.
Consistent with the previous results, on average, 78% REEs of PTopKDivMiner are labeled as
relevant, as opposed to 64% (resp. 42%) by PTopk-Miner (resp. Random).
Exp-3: Effectiveness of diversity measures. Fixing the relevance measure asMrel, we tested
the accuracy of each (and the combination) of our diversity measures using the metrics above.
Error coverage. Fixing 𝜂 = 0.85 and 𝑘 = 5, we tested PTopk-Miner, Random, PTopKDivMiner,
PTopKDivMinerNoDiv, and the four variants of PTopKDivMiner with a single diversity measure.
As shown in Figure 1(n), the REEs of PTopKDivMiner catch 76.5% of errors of those detected by
the entire set Σall, i.e., its ECratio is 76.5%. In contrast, without diversity measures, the ECratio of
PTopk-Miner, Random and PTopKDivMinerNoDiv is lower. In other words, our diversity measures
reduce the redundancy of rules and catch diverse errors. Note that the ECratio of PTopk-Miner is
the lowest (close to 0%). This is because (a) its REEs are “homogeneous”, (b) its relevance model is
trained by direct rule comparison, rather than based on unknown errors detected, and worse still,
(c) since it only considers relevance, its REEs have high confidence, leading to few rule violations.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:23

Method Rank Rule (note that we classify the impacts of authors into classes (e.g., “Low”, “Medium”, “High”
and “Very High”), based on the widely used measures h_index and p_index.)

PTopKDivMiner

𝜑1
author(𝑡0) ∧ author(𝑡1) ∧ 𝑡0 .#citations = 𝑡1 .#citations ∧ 𝑡1 .acamedic_impact = “High”
→ 𝑡0 .acamedic_impact = “High”

𝜑2
author(𝑡0) ∧ author(𝑡1) ∧ 𝑡0 .p_index = 𝑡1 .p_index ∧ 𝑡1 .#published_papers ≤ 50 ∧ 𝑡0 .#citations > 100
→ 𝑡0 .acamedic_impact = “Medium”

𝜑3

author(𝑡0) ∧ author(𝑡1) ∧ author2paper(𝑡2) ∧ author2paper(𝑡3) ∧ paper(𝑡4) ∧ paper(𝑡5)∧
𝑡0 .author_id = 𝑡2 .author_id ∧ 𝑡2 .paper_id = 𝑡4 .paper_id ∧ 𝑡1 .author_id = 𝑡3 .author_id ∧ 𝑡3 .paper_id =

𝑡5 .paper_id ∧ Msim (𝑡4 .venue, 𝑡5 .venue) ∧ 𝑡0 .#published_papers = 𝑡1 .#published_papers ∧ 𝑡1 .p_index = 0
→ 𝑡0 .acamedic_impact = “Low”

PTopk-Miner
𝜑 ′

1
author(𝑡0) ∧ author(𝑡1) ∧ 𝑡0 .author_id = 𝑡1 .author_id ∧ 𝑡1 .acamedic_impact = “Medium”
→ 𝑡0 .acamedic_impact = “Medium”

𝜑 ′
2

author(𝑡0) ∧ author(𝑡1) ∧ 𝑡0 .p_index = 𝑡1 .p_index ∧ 𝑡1 .acamedic_impact = “Medium”
→ 𝑡0 .acamedic_impact = “Medium”

𝜑 ′
3

author(𝑡0) ∧ author(𝑡1) ∧ 𝑡0 .#citations = 𝑡1 .#citations ∧ 𝑡1 .acamedic_impact = “Medium”
→ 𝑡0 .acamedic_impact = “Medium”

Table 5. Top-3 REEs by PTopKDivMiner and PTopk-Miner (𝜎 ≥ 5 × 10−6 · |D|2 and 𝜂 ≥ 0.7)

All diversity measures have comparable ECratio, except tuple coverage, whose ECratio is higher.
This is because its goal is to “cover as many different tuple as possible”, which is in favor of ECratio.
Varying 𝑘 (ECratio). Fixing 𝜂 = 0.85, we varied 𝑘 from 1 to 30 and studied its impact on ECratio in
Figure 1(o). For better visualization, we only plotted the best variant PTopKDivMinerTC and omitted
others. As expected, with more rules, all algorithms detect more errors. This said, PTopKDivMiner
performs the best, e.g., its ECratio is 77.5% with 10 rules and beats the best baseline by 21.32% on
average. Note that although PTopKDivMinerTC initially covers more errors (which it is designed
for), PTopKDivMiner has higher ECratio when 𝑘 ≥ 15, by combining all diversity measures.
Error dissimilarity. As shown in Figure 1(p), the errors detected by PTopKDivMiner are dissimilar
to each other, e.g., its JD on Hospital is as high as 0.94, indicating that the rules it returns are not ho-
mogeneous and thus can be considered as non-redundant to practitioners. In contrast, the errors de-
tected by other methods are more or less similar, yielding small JD. PTopk-Miner has the lowest JD.
Varying 𝜆 (JD). Varying the trade-off parameter 𝜆 from 0.1 to 0.025, we evaluated its impact on error
dissimilarity in Figure 1(q). Here smaller 𝜆meanswe focusmore on diversity than relevance in our bi-
criteria objective. As a result, the rules returned are able to detect more dissimilar errors in principle,
e.g., when 𝜆 is from 0.1 to 0.025, the JD of PTopKDivMiner increases from 0.47 to 0.685 on Airport.
Usefulness test.We compared the number of diversity labels received by PTopKDivMiner, PTopk-
Miner and Random. On average, 86% pairs of REEs in PTopKDivMiner are labeled as dissimilar, as
opposed to 68.5% and 71% by PTopk-Miner and Random, respectively. This further justifies the rules
identified by PTopKDivMiner are diverse and they can cover/characterize different cases of errors.
Exp-4: Effectiveness of top-𝑘 relevant and diversified discovery. Finally, we justified the
effectiveness of PTopKDivMiner.
Overall score. In Figure 1(r), we summed up the relevance and diversity scores as the overall score
𝐹 (Σ) of PTopKDivMiner, PTopk-Miner, Random, PTopKDivMinerNoDiv and PTopKDivMinerNoRel.
The rules from PTopKDivMiner achieve the best overall score; on average, it is 0.32, 0.34, 0.16 and
0.14 higher than the four baselines, respectively, because we optimize both diversity and relevance.
Optimality test. To verify the effectiveness of PTopKDivMiner, we compared its 𝐹 (Σ) with the (sub-
)optimal one. We sampled 5K tuples fromD and run REEFinder (𝜎 = 10−4 |D|2 and 𝜂 = 0.75), to get
the set Σall. Given𝑘 = 5, it is too expansive to compute the set Σopt of𝑘 REEswith the optimal 𝐹 (Σopt)
(Theorem 2). Thus, we estimated it by a swapping strategy. Specifically, we sampled 100 subsets Σ𝑠
of rules from Σall with |Σ𝑠 | = 𝑘 ; for each Σ𝑠 , we iteratively swapped a rule in Σ𝑠 with a rule in Σall
to best improve 𝐹 (Σ𝑠), until it reaches a local optimum, and Σopt is the one with the largest 𝐹 (Σ𝑠).

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

195:24 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

Figure 1(s) shows that the set Σ returned by PTopKDivMiner is as good as Σopt. Although Σ and
Σopt are not the same in all the datasets, their overall scores do not differ much, e.g., at most 0.0368.
Varying 𝜆 (relevance/diversity scores). Varying 𝜆 from 0.1 to 0.025, we tested its impact on the eval-
uation scores of PTopKDivMiner in Figure 1(t). To illustrate better, we plotted the relevance and
diversity scores separately. When 𝜆 gets smaller, we focus more on diversity than relevance and thus,
the relevance (resp. diversity) score of the resulting set of rules gets smaller (resp. larger), as expected.
Case study. We showcase the rules from PTopKDivMiner and PTopk-Miner in Table 5 in DBLP,
which has 3 relations author, paper and author2paper (which connects the first two). It includes vari-
ous metrics that reflect one’s academic achievements, e.g., h_index and p_index [55]. Wemined rules
with 𝑘 = 3 to classify the impact of authors into different classes (e.g., “Low”, “Medium”, “High” and
“Very High”), where Msim is an ML model for checking the similarity between publication venues.
(1) (Syntactic) The top-3 rules from PTopk-Miner are simple, with fewer and less diverse attributes/
predicates than PTopKDivMiner. Worse still, all three rules focused on medium-impact authors.
(2) (Semantic) Some rules from PTopk-Miner describe trivial facts, e.g., 𝜑 ′

1 says that if 𝑡0 and 𝑡1
are identified by the unique id and 𝑡1 has medium impact, so does 𝑡0, Worse still, 𝜑 ′

2 and 𝜑 ′
3 only

differ in how they compare the authors’ impact (i.e., p_index vs. #citations) and thus, they are
“homogeneous” and to some extent, “redundant”.

In contrast, the top-3 rules from PTopKDivMiner not only include easy-to-understand rules like
𝜑1, which uses the impact of another researcher with same citation counts, to deduce one’s academic
impact, but also more complicated ones, e.g., 𝜑3 that makes the decision by considering the p_index
of another researcher who (a) has published the same number of papers and (b) has published some
papers at similar venues. Better still, each rule uses a distinct set of attributes/predicates and covers
a different impactful level.
Summary. We find the following. (1) Discovery of top-𝑘 relevant and diversified rules is efficient.
For all 𝑘 ≤ 40, PTopKDivMiner is on average 62.4X faster than mining the entire set Σall of rules.
It is feasible in practice: it takes less than 818s to mine top-10 REEs from NCVoter with 1.68M
tuples when 𝑛 = 20. (2) It is parallelly scalable: on average, it is 3.05X faster when the number
𝑛 of machines varies from 4 to 20. (3) It scales well with parameters 𝜎, 𝜂 and 𝑘 . (4) Our pruning
strategies are effective, e.g., it reduces the runtime of PTopKDivMiner by 51.66X when 𝑘 = 1. (5)
Our relevance model Mrel is accurate and its data-dependent embedding strategy improves the
accuracy by 2.35%. (6) The rules returned by PTopKDivMiner are relevant (e.g., its average F1 of
real error detection is 0.74 when 𝑘 = 10, 39.62% higher than PTopk-Miner) and diverse (e.g., 10 rules
can catch 77.5% of errors detected by Σall).

7 Conclusion
The work is novel in the following: (1) a discovery paradigm for top-𝑘 relevant and diversified
rules; (2) a relevance model and four diversity measures for rule discovery; (3) the complexity
and approximation hardness of the discovery problem; and (4) the first algorithm and pruning
techniques for the problem, with parallel scalability and approximation bounds under certain
conditions. We have empirically verified that the method is promising in practice.

One topic for future work is to further simplify and speed up the process of learning users’ prior
knowledge for relevance. Another topic is to develop an algorithm to incrementally discover rules.

Acknowledgments
This work is supported by China NSFC 62202313 and Guangdong Basic and Applied Basic Research
Foundation 2022A1515010120.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:25

References
[1] 2022. EJML library. http://ejml.org/wiki/index.php?title=Main_Page.
[2] 2024. Apple Corps Ltd. https://en.wikipedia.org/wiki/Apple_Corps.
[3] 2024. Apple Inc. https://www.apple.com/.
[4] 2024. China Organization Code - An Introduction. https://www.chinacheckup.com/blog/china-organization-code.
[5] 2024. Full version. https://drive.google.com/drive/folders/1iEZAzt6xj8K-A-8oK5XMkLBLn-Vtb_SV?usp=sharing.
[6] 2024. How To Find Your Company’s Unified Social Credit Code in China. https://osome.com/hk/blog/how-to-find-

your-companys-uscc-in-china/.
[7] 2024. Rock. http://www.grandhoo.com/en.
[8] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. 2014. DFD: Efficient functional dependency discovery. In

CIKM. 949–958.
[9] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
[10] Efrat Abramovitz, Daniel Deutch, and Amir Gilad. 2018. Interactive inference of SPARQL queries using provenance.

In ICDE. IEEE, 581–592.
[11] Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining Association Rules in Large Databases.

In VLDB.
[12] Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo I. Seltzer, and Cynthia Rudin. 2017. Learning Certifiably

Optimal Rule Lists for Categorical Data. J. Mach. Learn. Res. 18 (2017), 234:1–234:78.
[13] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases. In

PODS. 68–79.
[14] Xianchun Bao, Zian Bao, Qingsong Duan, Wenfei Fan, Hui Lei, Daji Li, Wei Lin, Peng Liu, Zhicong Lv, Mingliang

Ouyang, Jiale Peng, Jing Zhang, Runxiao Zhao, Shuai Tang, Shuping Zhou, Yaoshu Wang, Qiyuan Wei, Min Xie, Jing
Zhang, Xin Zhang, Runxiao Zhao, and Shuping Zhou. 2024. Rock: Cleaning Data by Embedding ML in Logic Rules.
In SIGMOD (industrial track).

[15] Arthur G Bedeian and Kevin W Mossholder. 2000. On the use of the coefficient of variation as a measure of diversity.
Organizational Research Methods 3, 3 (2000), 285–297.

[16] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in relational data. TKDD (2007).
[17] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial Constraint Discovery with Hydra. PVLDB

11, 3 (2017), 311–323.
[18] Allan Borodin, Aadhar Jain, Hyun Chul Lee, and Yuli Ye. 2017. Max-sum diversification, monotone submodular

functions, and dynamic updates. ACM Transactions on Algorithms (TALG) 13, 3 (2017), 1–25.
[19] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.
[20] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah. 1993. Signature verification using a

"Siamese" time delay neural network. In Advances in neural information processing systems 6.
[21] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents and

producing summaries. In SIGIR. ACM, 335–336.
[22] Barun Chandra and Magnús M Halldórsson. 2001. Approximation algorithms for dispersion problems. Journal of

algorithms 38, 2 (2001), 438–465.
[23] Chaofan Chen and Cynthia Rudin. 2018. An Optimization Approach to Learning Falling Rule Lists. In International

Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 84. PMLR, 604–612.
[24] Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. 2022. RLogic: Recursive Logical Rule Learning from Knowledge

Graphs. In KDD. ACM, 179–189.
[25] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas Stefanidis. 2021. An

Overview of End-to-End Entity Resolution for Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1–127:42. https:
//doi.org/10.1145/3418896

[26] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints. PVLDB 6, 13 (2013), 1498–1509.
[27] William W. Cohen. 1995. Fast Effective Rule Induction. In International Conference on Machine Learning. Morgan

Kaufmann, 115–123.
[28] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. 2013. Summarization Through Submodularity and Dispersion. In

ACL. ACL, 1014–1022.
[29] Ting Deng and Wenfei Fan. 2014. On the Complexity of Query Result Diversification. ACM Trans. Database Syst. 39,

2 (2014), 15:1–15:46.
[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In NAACL-HLT. 4171–4186.
[31] Wenfei Fan. 2022. Big Graphs: Challenges and Opportunities. PVLDB 15, 12 (2022), 3782–3797.
[32] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic constraints for record matching. VLDB J.

20, 4 (2011), 495–520.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

http://ejml.org/wiki/index.php?title=Main_Page
https://en.wikipedia.org/wiki/Apple_Corps
https://www.apple.com/
https://www.chinacheckup.com/blog/china-organization-code
https://drive.google.com/drive/folders/1iEZAzt6xj8K-A-8oK5XMkLBLn-Vtb_SV?usp=sharing
https://osome.com/hk/blog/how-to-find-your-companys-uscc-in-china/
https://osome.com/hk/blog/how-to-find-your-companys-uscc-in-china/
http://www.grandhoo.com/en
https://doi.org/10.1145/3418896
https://doi.org/10.1145/3418896

195:26 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

[33] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Dependencies for
Capturing Data Inconsistencies. ACM Trans. Database Syst. 33, 1 (2008), 25:1–25:49.

[34] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering conditional functional dependencies.
TKDE 23, 5 (2011), 683–698.

[35] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2022. Parallel Rule Discovery from Large Datasets by Sampling.
In SIGMOD. ACM, 384–398.

[36] Wenfei Fan, Ziyan Han, Yaoshu Wang, and Min Xie. 2023. Discovering Top-k Rules using Subjective and Objective
Criteria. Proc. ACM Manag. Data 1, 1 (2023), 70:1–70:29.

[37] Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying logic rules and machine learning for entity enhancing. Sci. China
Inf. Sci. 63, 7 (2020).

[38] Wenfei Fan, Chao Tian, Yanghao Wang, and Qiang Yin. 2021. Parallel Discrepancy Detection and Incremental
Detection. PVLDB 14, 8 (2021), 1351–1364.

[39] Wenfei Fan, Xin Wang, and Yinghui Wu. 2013. Diversified Top-k Graph Pattern Matching. PVLDB 6, 13 (2013),
1510–1521.

[40] Wenfei Fan, Xin Wang, Yinghui Wu, and Jingbo Xu. 2015. Association Rules with Graph Patterns. PVLDB 8, 12 (2015),
1502–1513.

[41] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional dependencies for graphs. In SIGMOD. 1843–1857.
[42] Uriel Feige. 1998. A threshold of ln n for approximating set cover. Journal of the ACM (JACM) 45, 4 (1998), 634–652.
[43] Peter A Flach and Iztok Savnik. 1999. Database dependency discovery: A machine learning approach. AI communica-

tions 12, 3 (1999), 139–160.
[44] Philippe Fournier-Viger and Vincent S Tseng. 2012. Mining top-k non-redundant association rules. In Foundations of

Intelligent Systems (ISMIS). Springer, 31–40.
[45] Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. 2012. Top-k bounded diversification. In SIGMOD. ACM,

421–432.
[46] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2007. Sparse inverse covariance estimation with the graphical

lasso. Biostatistics 9, 3 (2007), 432–441.
[47] Johannes Fürnkranz and Gerhard Widmer. 1994. Incremental Reduced Error Pruning. In International Conference on

Machine Learning. Morgan Kaufmann, 70–77.
[48] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.

H. Freeman.
[49] Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. 2019. Secure Multi-Party Functional Dependency Discovery. PVLDB

13, 2 (2019), 184–196.
[50] Liqiang Geng and Howard J Hamilton. 2006. Interestingness measures for data mining: A survey. ACM Computing

Surveys (CSUR) 38, 3 (2006), 9–es.
[51] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008. On generating near-optimal tableaux

for conditional functional dependencies. PVLDB 1, 1 (2008), 376–390.
[52] Sreenivas Gollapudi and Aneesh Sharma. 2009. An axiomatic approach for result diversification. In WWW.
[53] Johan Hastad. 1996. Clique is hard to approximate within n/sup 1-/spl epsiv. In FOCS. IEEE, 627–636.
[54] Robert J Hilderman and Howard J Hamilton. 2013. Knowledge discovery and measures of interest. Vol. 638. Springer

Science & Business Media.
[55] Adrian Horzyk. 2014. p-index–A Fair Alternative to h-index. Department of Automatics and Biomedical Engineering.

Poland (2014).
[56] Xiyang Hu, Cynthia Rudin, and Margo I. Seltzer. 2019. Optimal Sparse Decision Trees. In NeurIPS. 7265–7273.
[57] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE: An Efficient Algorithm for Discovering

Functional and Approximate Dependencies. Comput. J. (1999).
[58] Zhengbao Jiang, Ji-Rong Wen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie, and Ming Yue. 2017. Learning to

diversify search results via subtopic attention. In SIGIR. 545–554.
[59] Jyrki Kivinen and Heikki Mannila. 1995. Approximate inference of functional dependencies from relations. Theoretical

Computer Science 149, 1 (1995), 129–149.
[60] loannis Koumarelas, Thorsten Papenbrock, and Felix Naumann. 2020. MDedup: Duplicate detection with matching

dependencies. PVLDB 13, 5 (2020), 712–725.
[61] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate dependencies. PVLDB 11, 7 (2018),

759–772.
[62] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A Complexity Theory of Efficient Parallel Algorithms. Theor.

Comput. Sci. 71, 1 (1990), 95–132.
[63] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable decision sets: A joint framework for

description and prediction. In SIGKDD. ACM, 1675–1684.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

Discovering Top-k Relevant and Diversified Rules 195:27

[64] J Kevin Lanctot, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang. 2003. Distinguishing string selection problems.
Information and Computation 185, 1 (2003), 41–55.

[65] Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici. 2020. Evaluating classification feasibility using
functional dependencies. Transactions on Large-Scale Data-and Knowledge-Centered Systems XLIV: Special Issue on
Data Management–Principles, Technologies, and Applications (2020), 132–159.

[66] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit Bose, and Alex Peysakhovich. 2019.
Pytorch-BigGraph: A Large Scale Graph Embedding System. In MLSys.

[67] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020. Deep Entity Matching with
Pre-Trained Language Models. PVLDB 14, 1 (2020), 50–60.

[68] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo I. Seltzer. 2020. Generalized and Scalable Optimal
Sparse Decision Trees. In International Conference on Machine Learning (ICML), Vol. 119. PMLR, 6150–6160.

[69] Weiwen Liu, Yunjia Xi, Jiarui Qin, Xinyi Dai, Ruiming Tang, Shuai Li,Weinan Zhang, and Rui Zhang. 2023. Personalized
Diversification for Neural Re-ranking in Recommendation. In ICDE. IEEE, 802–815.

[70] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approximate Denial Constraints. PVLDB 13,
10 (2020), 1682–1695.

[71] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient discovery of functional dependencies and Armstrong
relations. In EDBT. Springer, 350–364.

[72] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective error correction via a unified context representa-
tion and transfer learning. PVLDB 13, 12 (2020), 1948–1961.

[73] Panagiotis Mandros, Mario Boley, and Jilles Vreeken. 2017. Discovering reliable approximate functional dependencies.
In SIGKDD. 355–363.

[74] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. 1994. Efficient Algorithms for Discovering Association
Rules. In Knowledge Discovery in Databases: AAAI. AAAI Press, 181–192.

[75] Michel Minoux. 2005. Accelerated greedy algorithms for maximizing submodular set functions. In IFIP Conference on
Optimization Techniques. Springer, 234–243.

[76] Stephen H. Muggleton and Luc De Raedt. 1994. Inductive Logic Programming: Theory and Methods. J. Log. Program.
19/20 (1994), 629–679.

[77] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. 1978. An analysis of approximations for maximizing
submodular set functions—I. Mathematical programming 14 (1978), 265–294.

[78] Noel Novelli and Rosine Cicchetti. 2001. Fun: An efficient algorithm for mining functional and embedded dependencies.
In ICDT. Springer, 189–203.

[79] Donald B Owen. 1965. The power of Student’s t-test. J. Amer. Statist. Assoc. 60, 309 (1965), 320–333.
[80] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph, Martin Schönberg, Jakob

Zwiener, and Felix Naumann. 2015. Functional dependency discovery: An experimental evaluation of seven algorithms.
PVLDB 8, 10 (2015), 1082–1093.

[81] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Functional Dependency Discovery. In
SIGMOD.

[82] Marcel Parciak, Sebastiaan Weytjens, Niel Hens, Frank Neven, Liesbet M Peeters, and Stijn Vansummeren. 2023.
Measuring Approximate Functional Dependencies: a Comparative Study. arXiv preprint arXiv:2312.06296 (2023).

[83] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019. Discovery of Approximate (and Exact)
Denial Constraints. PVLDB 13, 3 (2019), 266–278.

[84] Chao Qian, Dan-Xuan Liu, and Zhi-Hua Zhou. 2022. Result diversification by multi-objective evolutionary algorithms
with theoretical guarantees. Artificial Intelligence 309 (2022), 103737.

[85] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying top-𝜅 results. PVLDB (2012).
[86] J. Ross Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (1986), 81–106.
[87] J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann.
[88] J. Ross Quinlan. 2004. Data Mining Tools See5 and C5.0.
[89] Sekharipuram S Ravi, Daniel J Rosenkrantz, and Giri Kumar Tayi. 1994. Heuristic and special case algorithms for

dispersion problems. Operations research 42, 2 (1994), 299–310.
[90] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In

EMNLP-IJCNLP. 3980–3990.
[91] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean: Holistic Data Repairs with

Probabilistic Inference. PVLDB 10, 11 (2017), 1190–1201.
[92] Rock. 2024. Entity Deduplication in a Major Domestic Research Institution. https://www.grandhoo.com/en/rock/

customer-case/entity-reduction/.
[93] Rock. 2024. Keyword Search in an Open Data Platform. https://www.grandhoo.com/en/rock/customer-case/field-

search/.

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

https://www.grandhoo.com/en/rock/customer-case/entity-reduction/
https://www.grandhoo.com/en/rock/customer-case/entity-reduction/
https://www.grandhoo.com/en/rock/customer-case/field-search/
https://www.grandhoo.com/en/rock/customer-case/field-search/

195:28 Wenfei Fan, Ziyan Han, Min Xie, & Guangyi Zhang

[94] Rock. 2024. Multi-source Entity Resolution in a Commercial Bank. https://www.grandhoo.com/en/rock/customer-
case/bank-entity/.

[95] Rock. 2024. Regulatory Reporting in a Leading Bank in Shenzhen. https://www.grandhoo.com/en/rock/customer-
case/bank-supervision/.

[96] Sudeepa Roy and Dan Suciu. 2014. A formal approach to finding explanations for database queries. In SIGMOD. ACM,
1579–1590.

[97] Cynthia Rudin, Benjamin Letham, and David Madigan. 2013. Learning theory analysis for association rules and
sequential event prediction. J. Mach. Learn. Res. 14, 1 (2013), 3441–3492.

[98] Philipp Schirmer, Thorsten Papenbrock, Ioannis Koumarelas, and Felix Naumann. 2020. Efficient Discovery of
Matching Dependencies. RODS 45, 3 (2020), 1–33.

[99] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis Hempfing, Torben Mayer, and
Daniel Neuschäfer-Rube. 2019. DynFD: Functional Dependency Discovery in Dynamic Datasets. In EDBT.

[100] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo Papotti, Jorge-Arnulfo
Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. PVLDB
11, 2 (2017), 189–202.

[101] Shaoxu Song and Lei Chen. 2009. Discovering matching dependencies. In CIKM.
[102] Ramakrishnan Srikant and Rakesh Agrawal. 1996. Mining Sequential Patterns: Generalizations and Performance

Improvements. In EDBT. Springer, 3–17.
[103] Zheng Tan, Hang Yu, Wei Wei, and Jinglei Liu. 2020. Top-K interesting preference rules mining based on MaxClique.

Expert Systems with Applications 143 (2020), 113043.
[104] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. ArnetMiner: Extraction and Mining of

Academic Social Networks. In KDD. 990–998.
[105] Marcos R. Vieira, Humberto Luiz Razente, Maria Camila Nardini Barioni, Marios Hadjieleftheriou, Divesh Srivastava,

Caetano Traina Jr., and Vassilis J. Tsotras. 2011. On query result diversification. In ICDE.
[106] Tong Wang, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille. 2017. A Bayesian

Framework for Learning Rule Sets for Interpretable Classification. J. Mach. Learn. Res. 18 (2017), 70:1–70:37.
[107] G. I. Webb and S. Zhang. 2005. k-Optimal Rule Discovery. Data Mining and Knowledge Discovery 10, 1 (2005), 39–79.
[108] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in Aggregate Queries. PVLDB 6, 8 (2013).
[109] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. 2001. FastFDs: A Heuristic-Driven, Depth-First

Algorithm for Mining Functional Dependencies from Relation Instances - Extended Abstract. In DaWak.
[110] Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han. 2006. Extracting redundancy-aware top-k patterns. In SIGKDD.

444–453.
[111] Zhengwei Yang, Ada Wai-Chee Fu, and Ruifeng Liu. 2016. Diversified top-k subgraph querying in a large graph. In

SIGMOD. 1167–1182.
[112] Hong Yao, Howard J. Hamilton, and Cory J. Butz. 2002. FD_Mine: Discovering functional dependencies in a database

using equivalences. In IEEE ICDM. 1–15.
[113] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. 2018. GAIN: Missing Data Imputation using Generative

Adversarial Nets. In ICML (Proceedings of Machine Learning Research), Vol. 80. PMLR, 5675–5684.
[114] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2016. Diversified top-k clique search. VLDBJ 25, 2

(2016), 171–196.
[115] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. 1997. New Algorithms for Fast

Discovery of Association Rules. In KDD. AAAI Press, 283–286.
[116] Guangyi Zhang and Aristides Gionis. 2020. Diverse rule sets. In SIGKDD. ACM, 1532–1541.
[117] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Perspective on Discovering Functional

Dependencies in Noisy Data. In SIGMOD. 861–876.

Received January 2024; revised April 2024; accepted May 2024

Proc. ACM Manag. Data, Vol. 2, No. 4 (SIGMOD), Article 195. Publication date: September 2024.

https://www.grandhoo.com/en/rock/customer-case/bank-entity/
https://www.grandhoo.com/en/rock/customer-case/bank-entity/
https://www.grandhoo.com/en/rock/customer-case/bank-supervision/
https://www.grandhoo.com/en/rock/customer-case/bank-supervision/

	Abstract
	1 Introduction
	2 Collective Rules with ML Models
	3 The Discovery Problem
	3.1 Relevance Measures
	3.2 Diversity Measures
	3.3 The Discovery Problem

	4 A Discovery Algorithm for TopKDiv
	5 Optimization Strategies
	5.1 Pruning within One Greedy Iteration
	5.2 Pruning across Greedy Iterations
	5.3 More Optimizations

	6 Experimental Study
	7 Conclusion
	Acknowledgments
	References

