
Parallel Rule Discovery from Large Datasets by Sampling
Wenfei Fan1,2,3, Ziyan Han3, Yaoshu Wang1, Min Xie1

Shenzhen Institute of Computing Sciences1 University of Edinburgh2 Beihang University3

China1,3 United Kingdom2

wenfei@inf.ed.ac.uk,hanzy@act.buaa.edu.cn,yaoshuw@sics.ac.cn,xiemin@sics.ac.cn

ABSTRACT
Rule discovery from large datasets is often prohibitively costly. The
problem becomes more staggering when the rules are collectively
defined across multiple tables. To scale with large datasets, this
paper proposes a multi-round sampling strategy for rule discovery.
We consider entity enhancing rules (REEs) for collective entity res-
olution and conflict resolution, which may carry constant patterns
and machine learning predicates. We sample large datasets with
accuracy bounds 𝛼 and 𝛽 such that at least 𝛼% of rules discovered
from samples are guaranteed to hold on the entire dataset (i.e., pre-
cision), and at least 𝛽% of rules on the entire dataset can be mined
from the samples (i.e., recall). We also quantify the connection be-
tween support and confidence of the rules on samples and their
counterparts on the entire dataset. To scale with the number of tu-
ple variables in collective rules, we adopt deep Q-learning to select
semantically relevant predicates. To improve the recall, we develop
a tableau method to recover constant patterns from the dataset. We
parallelize the algorithm such that it guarantees to reduce runtime
when more processors are used. Using real-life and synthetic data,
we empirically verify that the method speeds up REE discovery by
12.2 times with sample ratio 10% and recall 82%.

CCS CONCEPTS
• Information systems→ Information integration.

KEYWORDS
Rule discovery, data quality, sampling
ACM Reference Format:
Wenfei Fan1,2,3, Ziyan Han3, Yaoshu Wang1, Min Xie1. 2022. Parallel Rule
Discovery from Large Datasets by Sampling . In Proceedings of the 2022
International Conference on Management of Data (SIGMOD ’22), June 12–17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3514221.3526165

1 INTRODUCTION
Rule discovery has been a longstanding challenge for decades.
To make practical use of rules such as functional dependencies
(FDs [14]), conditional functional dependencies (CFDs [18]), denial
constraints (DCs [4]) and matching dependencies (MDs [17]), we
need to discover reliable rules from real-life datasets such that the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526165

rules can be frequently applied (i.e., support) and frequently hold on
the data (i.e., confidence). While a number of discovery algorithms
have been developed, the need for more scalable methods is evident.
A recent study shows that it takes “days or longer” when mining
FDs on a dataset with 100 attributes and 300K tuples [51].

The scalability problem of rule discovery becomes more stag-
gering for rules beyond FDs. Recall that FDs 𝑋 → 𝑌 are defined
with two relation atoms on a single table. It has long been recog-
nized that to accurately resolve conflicts (conflict resolution) and
identify tuples that refer to the same tuple (entity resolution), one
needs collective rules defined with multiple relation atoms to cor-
relate information across tables [5, 22]. The cost of collective rule
discovery is inherently exponential in the size of datasets since it
requires to join multiple tables, no matter whether we use levelwise
method [30] or depth-first search [69]. Worse yet, for rules that
support constant patterns such as CFDs and DCs, the discovery
cost inevitably increases since such patterns have to be enumerated.

To scale with large real-life datasets, a variety of sampling meth-
ods have been proposed [6–10, 13, 29, 31, 35, 42, 44, 46, 47, 52, 67].
The idea is to pick a representative sample D𝑠 of a real-life dataset
D, and discover rules from smaller D𝑠 instead of directly from
large D. However, these methods typically target rules that are
defined on a single table with at most two relation atoms.

The sampling approach gives rise to several questions. Is there
a sampling method that guarantees the accuracy of the rules Σ𝑠
discovered from sample D𝑠 w.r.t. the rules Σ mined from the entire
dataset D? That is, can we ensure that most rules in Σ𝑠 hold on
the dataset D and hence are also in Σ (precision), and moreover,
most rules in Σ can be discovered fromD𝑠 and hence be covered by
Σ𝑠 (recall)? In addition, suppose that we discover Σ from D with
thresholds 𝜎 and 𝛿 for support and confidence, respectively; then
what thresholds and sampling size should we adopt for mining Σ𝑠
from D𝑠 to ensure a reasonable accuracy? How can we discover
collective rules across multiple tables? If the rules support constant
patterns like CFDs, how can we retrieve all such patterns when
D𝑠 inevitably drops constants from D? When sampling alone does
not suffice to scale with large datasets, e.g., if the required samples
are still large to meet an accuracy bound, is it possible to have a
parallel algorithm that scales with the number of processors used?

Contributions & organization. This paper tackles these issues.
As a testbed of our proposed method, we consider the class of Entity
Enhancing Rules (REEs) [21, 22], which subsume CFDs, DCs and
MDs as special cases, and are collectively defined across different
tables with multiple relation atoms. As opposed to the previous
rules, REEs specify rules for both entity resolution (ER) and conflict
resolution (CR), and unify machine learning (ML) and rule-based
methods by embedding ML models for ER, CR and similarity check-
ing as predicates in logic rules. Like CFDs and DCs, REEs support

https://doi.org/10.1145/3514221.3526165
https://doi.org/10.1145/3514221.3526165
https://doi.org/10.1145/3514221.3526165

constant patterns of semantically related data. REEs are the rules un-
derlying Rock, an industrial system for data cleaning. In this paper,
we propose a novel sampling framework with optimization strate-
gies for REE discovery. This said, the techniques can also be used
to discover CFDs, DCs andMDs, which are special cases of REEs.
(1) Generic rules (Section 2). We introduce a representation of REEs
[21, 22] bymeans of a tableau that specifies constant patterns, which
helps us efficiently retrieve such patterns. We also identify practical
ML models that can be plugged into REEs as predicates.
(2) REE discovery problem (Section 3). We formulate the discovery
problem for REEs with sampling. We also characterize the accuracy
of the set Σ𝑠 of REEs discovered from sample D𝑠 , relative to the set
of Σ mined from the entire dataset D, in both precision and recall.
(3) A sampling strategy (Section 4). We propose a multi-round sam-
pling strategy based on random-walk or BFS (Breath First Search)
search to discover REEs independently in each sample. We prove
an accuracy bound and deduce a sampling size for the sampling
method with BFS. Under a given accuracy bound, we establish a
connection between the thresholds of support and confidence for
mining REEs on samples and the thresholds on the entire datasets,
as a guidance for scaling samples and mining valid rules.
(4) Discovering REEs (Section 5). We present a parallel algorithm
to discover REEs with sampling, denoted as PRMiner. We propose
to train a reinforcement learning model and select semantically
correlated predicates with the model to mine collective rules across
multiple tables. We also show how we populate tableaux to effi-
ciently retrieve constant patterns without enumerating numerous
constant values. We prove that PRMiner is parallely scalable, i.e.,
it guarantees to take less runtime when more processors are used.
(6) Experimental study (Section 6). Using real-life and synthetic data,
we empirically verify the following. On average, (a) with sample ra-
tio 10%, PRMiner speeds up rule discovery by 12.2 times with preci-
sion 90% and recall 82%, up to 93% and 85%, respectively; it improves
random sampling by 7% in recall. (b) It scales well with the number
𝑛 of processors, e.g., it is 3.09 times faster when 𝑛 varies from 4 to 20.
(c) Employing ML correlation model in discovery improves the effi-
ciency by 1.52 times on average, up to 3.77 times. (d) Constant pat-
tern recovery further improves the recall by 2% on average, up to 4%.

Related work. We categorize the related work as follows.
Sampling methods. Various sampling methods have been explored
for discovering rules. (1) Random (uniform) sampling, which is com-
monly used for its simplicity. In association rule mining, researchers
mainly focused on deriving size bounds for a single sample to obtain
high-quality approximation, e.g., [7, 47, 67] adopt random sampling
to derive the sample size with Chernoff bounds and union bound.
The bounds are improved by using, e.g., the central limit theo-
rem [32, 41, 73] and hybrid Chernoff bounds [75]. For data quality
rule, [44] uses uniform sampling to discover DCs using Chebyshev
inequality, to estimate the number of rule violations and uses this
estimate to derive appropriate parameters for rule mining. Unfor-
tunately, [44] limits the discussion on bi-variable DCs on a single
relation, and do not consider constant patterns. (2) Focused sam-
pling. [35] and [6] utilize auxiliary structures, e.g., agree sets or

evidence sets, for rule discovery. Due to the high complexity, they
adopt focused sampling to sample tuple pairs for constructing the
desired structures. (3) Progressive sampling. To improve the loose
bound of single random sampling, [8, 10, 13, 29, 31, 46, 52] adopt
multi-iteration sampling, such that an initial random sample is first
drawn and is then revised iteratively. Unfortunately, they fail to
bound the sample size. In contrast, [57] mines frequent itemsets
with size guarantee using the theorem of Rademacher Averages. (4)
Stratified sampling. The method is adopted for mining association
rules [42] on a single relation with size bound for estimating the
support of itemsets, and answering aggregated queries [70] to min-
imize the sample size while satisfying an error bound. (5) Heuristic
sampling for mining association rules by e.g., [9]. Although it offers
no guarantee, the strategies often achieve high accuracy.

This work differs from the prior. (a) To the best of our knowledge,
this is the first sampling strategy with accuracy bounds for data
quality rules that carry (i) more than two relation atoms across
multiple tables, (ii) patterns of semantically related constants, and
(iii) ML predicates. (b) We provide a bound on the sample size while
guaranteeing precision and recall instead of error rates. (c) We es-
tablish the connection between support and confidence thresholds
on the sample and the entire dataset. (d) We make a first effort
to employ multi-round sampling in data quality rule discovery, to
boost up the accuracy compared with single-round sampling.

Rule discovery. Efforts have been made on discovering data qual-
ity rules, classified as follows. (1) Levelwise search. Lattice traver-
sal are widely adopted to discover FDs, e.g., TANE [30], FUN [50],
FD_mine [71]. Techniques are also developed to speed up the search,
e.g., agree sets are utilized inDepmine [45], sampling techniques are
combined in HyFD [51] to prune non-FDs, DynFD [61] focuses on
FD discovery in dynamic datasets, and SMFD [25] proposes a top-
down framework to discover and validate FDs in a secured multi-
party scenario. Levelwise methods are also used for CFDs andMDs,
e.g., CTANE [19] and tableau generation [26] for CFDs, and similar-
ity thresholds [64] forMDs. (2)Depth-first search.Depth-first traver-
sal is also applied for FD discovery, e.g., DFD [2] mines FDs via ran-
dom walk, FastFDs [69] improves Depmine by using different sets.
Depth-first search is extended toCFDs andDCs, e.g., FastCFDs [19]
extends FastFDs to mine CFDs, while FastDC [12], Hydra [6],
DCFinder [53] and ADCMiner [44] use evidence sets to mine bi-
variableDCs, although by definition,DCs support multiple relation
atoms [12]. (3) Hybrid approaches. HyMD [60] combines levelwise
and depth-first approaches to mine MDs with pre-computed struc-
tures. MDedup [34] selects useful MDs discovered by HyMD. (4)
Learning-based approaches. State-of-the-art learning methods have
been used for rule discovery, e.g., inductive learning in [23] and
structure learning (i.e., graphical lasso) in AutoFD [74], and the rule
learning strategies in [33, 63]. More ER solvers can be found in [11].

This work differs from the prior work as follows. (1) Our multi-
round sampling strategy is flexible and can be combined with state-
of-the-art discovery algorithms, e.g.,DCFinder [53] andHyMD [60].
(2) We propose a strategy to discover collective rules across multiple
tables using reinforcement learning. (3) We propose a method for
efficiently retrieving constant patterns, to supplement sampling,
which inevitably drops constants from the original datasets.

2

Parallel rule discovery. Several parallel algorithms are already in
place for rule discovery. Massive parallelism is employed in [24, 39]
to discover FDs. However, they do not take communication cost into
consideration. [40] mines FDs in a distributed setting but it returns
local FDs only. Communication cost is minimized in [58], which is
extended from FastFD. A distributed framework is proposed in [59],
which is capable of discovering both FDs and DCs, based on a set
of primitives; however, the primitives do not support rules with
constant patterns, ML predicates and multiple tuple variables; while
in theory, the primitives can be extended to deal with these, it incurs
an exponential cost in the number of tuple variables. SMFD [25]
only focuses on how to enforce privacy constraints, although it
discovers FDs based on the lattice structure in a distributed manner.

Different from the existing works, we develop a discovery al-
gorithm that guarantees the parallel scalability, when both com-
putational and communication costs are considered, and supports
mining rules with constants, ML models and multiple tuples.

2 COLLECTIVE RULES WITH ML MODELS
We next present entity enhancing rules (REEs) defined in [21, 22].

Consider database schema R = (𝑅1, . . . , 𝑅𝑚), where 𝑅 𝑗 is a
schema 𝑅(𝐴1 : 𝜏1, . . . , 𝐴𝑛 : 𝜏𝑛), and each 𝐴𝑖 is an attribute of
type 𝜏𝑖 . We assume w.l.o.g. that each tuple 𝑡 in 𝐷 has an id attribute,
which uniquely defines the entity that 𝑡 represents. An instance D
of R is a collection (𝐷1, . . . , 𝐷𝑚), where each 𝐷𝑖 is a relation of 𝑅𝑖 .

Predicates. Predicates are the atmoic formats of tuple relational
calculus [3] and are used to represent correlations among attributes.
They constitute the basic components of REE rules.
Definition 2.1:We define predicates (i.e., atomic formulas) over a
database schema R as follows:

𝑝 ::= 𝑅(𝑡) | 𝑡 .𝐴 ⊕ 𝑐 | 𝑡 .𝐴 ⊕ 𝑠 .𝐵 | M(𝑡 [𝐴], 𝑠 [𝐵]),
where ⊕ is either = or ≠. Following tuple relational calculus (see,
e.g., [3]), (1) 𝑅(𝑡) is a relation atom over schema R, where 𝑅 ∈ R,
and 𝑡 is a tuple variable bounded by 𝑅(𝑡). (2) When 𝑡 is bounded
by 𝑅(𝑡) and 𝐴 is an attribute of 𝑅, 𝑡 .𝐴 denotes the 𝐴-attribute of 𝑡 .
(3) In 𝑡 .𝐴 ⊗ 𝑐 , 𝑐 is a constant in the domain of attribute 𝐴 in 𝑅. (4)
In 𝑡 .𝐴 ⊗ 𝑠 .𝐵, 𝑡 .𝐴 and 𝑠 .𝐵 are compatible, i.e., 𝑡 (resp. 𝑠) is a tuple
of some relation 𝑅 (resp. 𝑅′), and 𝐴 ∈ 𝑅 and 𝐵 ∈ 𝑅′ have the same
type. Moreover, (5)M is an ML classifier, 𝑡 [𝐴] and 𝑠 [𝐵] are vectors
of pairwise compatible attributes of 𝑡 and 𝑠 , respectively.

REEs. Employing predicates, we next define entity enhancing rules,
which subsume most of existing data quality rules [21].
Definition 2.2: An entity enhancing rule (REE) 𝜑 over a database
schema R is a first-order logic formula and is defined as

𝜑 : 𝑋 → 𝑝0,

where (1) 𝑋 is a conjunction of predicates over R, and (2) 𝑝0 is a
predicate over R such that all tuples variables in 𝜑 are bounded in 𝑋 .
We refer to𝑋 as the precondition of𝜑 and 𝑝0 as the consequence of𝜑 .

Example 1: Consider an organization database with two
self-explained relation schemas: Org (oid, org_name, zipcode,
org_address, city, country) in Table 1, and Pers (pid, oid,
persona_name, title,major, person_address, nationality) in Table 2.
Some example REEs over the database schema are given as follows.

(1) 𝜑1 : Org(𝑡𝑎) ∧ Org(𝑡𝑏) ∧MBert (𝑡𝑎 [𝐴], 𝑡𝑏 .[𝐴]) → 𝑡𝑎 .zipcode =
𝑡𝑏 .zipcode. Here we use the state-of-the-art ML model MBert [15]
to check the semantic similarity of text attributes, where 𝐴 denotes
(org_name, org_address) in relation Org. Intuitively, REE 𝜑1 states
that if two organizations have semantically similar names and ad-
dresses (checked byMBert), then they have the same zipcode.

(2) 𝜑2 : Pers(𝑡𝑎) ∧ Pers(𝑡𝑏) ∧ Org(𝑠𝑎) ∧ Org(𝑠𝑏) ∧ 𝑡𝑎 .title =

𝑡𝑏 .title∧MBert (𝑡𝑎 .person_name, 𝑡𝑏 .person_name)∧MLP (𝑡𝑎, 𝑠𝑎)∧
MLP (𝑡𝑏 , 𝑠𝑏) ∧ 𝑠𝑎 .oid = 𝑠𝑏 .oid → 𝑡𝑎 .pid = 𝑡𝑏 .pid. Here we use a link
predictionmodelMLP (𝑡, 𝑠) [62, 66] to predict whether person 𝑡 works
in organization 𝑠 (note that Pers might not record the fact “𝑡 works
in 𝑠”). Intuitively, this REE collectively utilizes the information from
both Org and Pers to identify two persons if they have similar names,
same titles and works in same organizations. The REE is defined across
two tables in terms of four tuple variables.

(3) 𝜑3 : Org(𝑡𝑎) ∧ Org(𝑡𝑏) ∧ 𝑋 → Maddr (𝑡𝑎 .org_address,
𝑡𝑏 .org_address), whereMaddr is an ML model for checking the close-
ness of addresses, and 𝑋 =

∧
𝐴𝑠 ∈T 𝑡𝑎 .𝐴𝑠 = 𝑡𝑏 .𝐴𝑠 and T denotes a

designated set of attributes in Org (which are not shown in the sim-
plified schema), including built-up area, located city, and neighbor-
hood information. Here the conditions in 𝑋 interpret the prediction
of Maddr (𝑡𝑎 .org_address, 𝑡𝑏 .org_address) in logic. That is, Maddr
predicts true because of the logic characteristics in 𝑋 .

Semantics. Consider an instance D of R. A valuation ℎ of tuple
variables of 𝜑 in D, or simply a valuation of 𝜑 , is a mapping that
instantiates 𝑡 in each 𝑅(𝑡) with a tuple in a relation 𝐷 of 𝑅.

Valuation ℎ satisfies a predicate 𝑝 , written as ℎ |= 𝑝 , if the follow-
ing are satisfied: (1) If 𝑝 is a relation atom 𝑅(𝑡), 𝑡⊕𝑐 or 𝑡 .𝐴⊕𝑠 .𝐵, then
ℎ |= 𝑝 is interpreted as in tuple relational calculus following the
standard semantics of first order logic [3]. (2) If 𝑝 isM(𝑡 [𝐴], 𝑠 [𝐵]),
then ℎ |= 𝑝 ifM predicts true on (ℎ(𝑡) [𝐴], ℎ(𝑠) [𝐵]).

For a set 𝑋 of predicates, we write ℎ |= 𝑋 if ℎ |= 𝑝 for all
predicates 𝑝 in 𝑋 . For an REE 𝜑 , we write ℎ |= 𝜑 such that if ℎ |= 𝑋 ,
then ℎ |= 𝑝0. An instance D of R satisfies 𝜑 , denoted by D |= 𝜑 , if
ℎ |= 𝜑 for all valuations ℎ of 𝜑 in D. We say that D satisfies a set Σ
of REEs, denoted by D |= Σ, if for each REE 𝜑 ∈ Σ, D |= 𝜑 .

Example 2: Continuing with Example 1, assume that D consists of
two relations 𝐷1 and 𝐷2 of schemas Org and Pers, shown in Tables 1
and 2, respectively. Consider valuation ℎ2: 𝑡7 ↦→ 𝑡𝑎 , 𝑡8 ↦→ 𝑡𝑏 , 𝑡3 ↦→ 𝑠𝑎
and 𝑡4 ↦→ 𝑠𝑏 . It satisfies REE 𝜑2, since 𝑝3 and 𝑝4 have similar names,
the same titles and their working organizations are predicted to be
the same by the link prediction modelMLP.

As another example, consider the valuation ℎ1 of REE 𝜑1 that has
mappings: 𝑡1 ↦→ 𝑡𝑎 and 𝑡2 ↦→ 𝑡𝑏 . It helps us fix conflicting values in
zipcode of 𝑡1 and 𝑡2, which have similar names and addresses.

ML predicates. REEs can embed ML classifiers of the following.
◦ NLP models. REEs can embed language models, such as
NER [27, 72], for text classification and semantic matching.

◦ ERmodels. One can use entity resolution and link prediction
classifiers for multi-attribute record matching, e.g., ditto [43],
BertER [37] which return Boolean values.

◦ CRmodels. We can also plug in classifiers for data fusion and
error detection e.g., HoloClean [56] and HoloDetect [28].

3

tid oid org_name zipcode org_address city country
𝑡1 𝑜1 Guangzhou No

One School
510375 Liwan Guangzhou

Guangdong
GZ CN

𝑡2 𝑜2 Guangzhou No.1
Middle School

510000 Liwan District, GZ,
Guangdong

GZ CN

𝑡3 𝑜3 Indiana U., Depart-
ment of Biology

47401 Indiana Ave, IN,
USA

USA

𝑡4 𝑜4 Indiana Univ.,
Computer Science

47401 IN Bloomington US

Table 1: Example Organization (Org) relation 𝐷1

tid pid oid person_name title major person_address nationality
𝑡5 𝑝1 𝑜1 Qiang Zhang Teacher math Liwan,

Guangzhou,
GD

CN

𝑡6 𝑝2 𝑜1 Qiang Zhang Teacher math Guangzhou CN
𝑡7 𝑝3 𝑜3 Matthew Hahn Prof. Bioinformatics Bloomington, IN,

USA
USA

𝑡8 𝑝4 M. Hahn Prof. Bio.

Table 2: Example Person (Pers) relation 𝐷2

Pattern format.We call an REE expressed in𝑋 → 𝑝0 as its regular
format. Equivalently, 𝜑 can be expressed in one-to-one correspond-
ing pattern format 𝜑 = (𝑃 → 𝑄, 𝑡𝑝) where 𝑃 and 𝑄 are tuple
attributes and operators used in 𝑋 and 𝑝0, respectively, and 𝑡𝑝 is
a pattern tuple, indicating how constant values and operators are
applied in 𝑃 and 𝑄 . To illustrate, consider a regular format REE:
𝜑 : 𝑅(𝑡)∧𝑅′(𝑠)∧𝑡 .𝐴 ≠ 𝑠 .𝐵∧M(𝑡 .𝐶, 𝑠 .𝐷)∧𝑡 .𝐸 = 𝑐∧𝑠 .𝐹 ≠ 𝑑 → 𝑡 .𝐺 = 𝑒.

Its pattern format is expressed as: 𝜑 = (𝑃 → 𝑄, 𝑡𝑝) where
𝑃 = [𝑡 .𝐴, 𝑡 .𝐶, 𝑡 .𝐸, 𝑠 .𝐵, 𝑠 .𝐷, 𝑠 .𝐹 , 𝑠 .𝐺, ⊕1, ⊕2], 𝑄 = [𝑡 .𝐺],
𝑡𝑝= (⊕1 .left, ⊕2 .left, 𝑐, ⊕1 .right, ⊕2 .right, 𝑑,≠,M||𝑒),

and ⊕𝑖 .left (resp. ⊕𝑖 .right) denotes the left (resp. right) operand of
⊕𝑖 . Note that the constant value of 𝑡 .𝐸 is directly assigned in 𝑡𝑝 ;
similarly for 𝑠 .𝐹 and 𝑡 .𝐺 (a bar above indicates an inequality).

Note that we can easily recover a pattern format REE 𝜑 = (𝑃 →
𝑄, 𝑡𝑝) to its regular format, e.g., to recover 𝑋 from 𝑃 , (1) for each
operator ⊕𝑖 in 𝑃 whose assigned value in 𝑡𝑝 is “=” (resp. “≠”), we
construct a predicate 𝑝 : ⊕𝑖 .left = ⊕𝑖 .right (resp. 𝑝 : ⊕𝑖 .left ≠

⊕𝑖 .right) in 𝑋 where ⊕𝑖 .left and ⊕𝑖 .right are the operands specified
in 𝑡𝑝 ; (2) for each operator ⊕𝑖 in 𝑃 whose assigned value in 𝑡𝑝 is the
ML model “M”, we construct a predicate 𝑝 : M(⊕𝑖 .left, ⊕𝑖 .right)
in𝑋 ; and (3) for each attribute 𝑡 .𝐴 in 𝑃 whose constant value 𝑐 (resp.
𝑑) is directly assigned in 𝑡𝑝 , we construct a predicate 𝑝 : 𝑡 .𝐴 = 𝑐

(resp. 𝑝 : 𝑡 .𝐴 ≠ 𝑑) in 𝑋 . The recovery of 𝑝0 from 𝑄 is similar.
Pattern tableau. When multiple REEs only differ in the constant
values in constant predicates, they can be expressed concisely in
one tableau REE in the form 𝜑T = (𝑃 → 𝑄,T𝑝), where T𝑝 is a
pattern tableau consisting of a finite number of pattern tuples. For
example, we can define a pattern tableau 𝜑T = (𝑃 → 𝑄,T𝑝) using
the same 𝑃 and 𝑄 defined above, and T𝑝 = {𝑡1

𝑝 , . . . , 𝑡
𝑘
𝑝 } where

𝑡𝑖𝑝 = (⊕1 .left, ⊕2 .left, 𝑐𝑖 , ⊕1 .right, ⊕2 .right, 𝑑𝑖 ,≠,M||𝑒𝑖).
The pattern tableau T𝑝 can be classified into two categories: (1)

constant pattern, if T𝑝 contains at least one constant value, and (2)
variable pattern, if T𝑝 does not have any constant value. Later, we
will use pattern tableau to retrieve constant patterns from the data.

3 RULE DISCOVERYWITH SAMPLING
We first formulate notions and sampling accuracy (Section 3.1),
followed by the discovery problem with sampling (Section 3.2).

3.1 Preliminary
In the literature of rule discovery, the validity of rules is usually
measured by two measurements, namely, support and confidence.
Support. Support measures how frequently a rule can be applied.
To illustrate support, we first define an order on rules.
Definition 3.1: Given two REEs 𝜑 : 𝑋 → 𝑝0 and 𝜑 ′ : 𝑋 ′ → 𝑝0, we
say that 𝜑 has a lower order than 𝜑 ′, denoted by 𝜑 ⪯ 𝜑 ′, if 𝑋 ⊂ 𝑋 ′.
Intuitively, 𝜑 is less restrictive than 𝜑 ′.

We use the following notions. Given a predicate 𝑝 , we define an

REE 𝜑𝑝 to verify whether two tuples satisfy 𝑝: 𝑅(𝑡) ∧ 𝑅′(𝑠) → 𝑝 ,
where 𝑡 and 𝑠 (of relation schema 𝑅 and 𝑅′, respectively) are the
tuple variables used in 𝑝 . Let 𝐻𝑝 be the set of valuations of 𝜑𝑝 inD.
We define the support set of 𝑝 on D, denoted by spset(𝑝,D), as

spset(𝑝,D) = {⟨ℎ(𝑡), ℎ(𝑠)⟩ | ℎ ∈ 𝐻𝑝 ∧ ℎ |= 𝜑𝑝 },
i.e., the set of tuple pairs satisfying 𝑝 . Similarly, given a conjunction
𝑋 of predicates, we define the support set of 𝑋 as follows:
spset(𝑋,D) = {⟨ℎ(𝑡), ℎ(𝑠)⟩ | ∀𝑝 ∈ 𝑋 (⟨ℎ(𝑡), ℎ(𝑠)⟩ ∈ spset(𝑝,D))},
i.e., the set of all tuple pairs satisfying all predicates in 𝑋 .

Given 𝜑 : 𝑋 → 𝑝0, assume that 𝐻 is the set of all valuations of
𝜑 in D, and 𝑡0 and 𝑠0 are the tuple variables used in 𝑝0. Then the
support set of 𝜑 , denoted by spset(𝜑,D), is defined as

spset(𝜑,D) = {⟨ℎ(𝑡0), ℎ(𝑠0)⟩ | ℎ ∈ 𝐻 ∧ ℎ |= 𝑋 ∧ ℎ |= 𝜑}.

Definition 3.2: The support of 𝜑 to quantify its frequency is

supp(𝜑,D) = |spset(𝜑,D)|.
Similarly we define the notions of supp(𝑝,D) and supp(𝑋,D).
For an integer 𝜎 , an REE is 𝜎-frequent on D if supp(𝜑,D) ≥ 𝜎 .
One can verify that the above notation of support satisfies the

anti-monotonicity, i.e., if 𝜑 ⪯ 𝜑 ′, then supp(𝜑,D) ≥ supp(𝜑 ′,D).

Example 3: Let𝑋 beOrg(𝑡)∧𝑡 .zipcode = 510375 and 𝑝0 be 𝑡 .city =

GZ. Consider two REEs 𝜑 : 𝑋 → 𝑝0 and 𝜑 ′ : 𝑋 ′ → 𝑝0, where
𝑋 ′ = 𝑋 ∧Pers(𝑠) ∧𝑡 .oid = 𝑠 .oid. Clearly, 𝜑 ⪯ 𝜑 ′ since𝑋 ⊂ 𝑋 ′. Then
supp(𝜑,D) ≥ supp(𝜑 ′,D), since spset(𝜑,D) = spset(𝜑 ′,D) =

{𝑡1 ↦→ 𝑡}, i.e., anti-monotonicity. Although 𝑡1 can join with two
tuples, 𝑡5 and 𝑡6, in 𝜑 ′, it does not lead to a larger support.

Confidence. Confidence indicates how often an REE 𝜑 : 𝑋 → 𝑝0
has been found to be true, given that 𝑋 is satisfied.
Definition 3.3:Given anREE𝜑 : 𝑋 → 𝑝0, the confidence of𝜑 onD,
denoted by conf (𝜑,D), is defined to be conf (𝜑,D) = supp(𝑋∧𝑝0,D)

supp(𝑋,D) .

For a threshold 𝛿 , an REE is 𝛿-confident on D if conf (𝜑,D) ≥ 𝛿 .

Minimality. An REE 𝜑 : 𝑋 → 𝑝0 over R is said to be trivial if
𝑝0 ∈ 𝑋 . In the rest of this paper, we only consider non-trivial REEs.

An REE 𝜑 : 𝑋 → 𝑝0 is left-reduced on D if 𝜑 is 𝜎-frequent,
𝛿-confident and moreover, there exists no REE 𝜑 ′ such that 𝜑 ′ ⪯ 𝜑

and 𝜑 ′ is 𝜎-frequent and 𝛿-confident. Intuitively, it means that no
predicate in 𝑋 can be removed, i.e., the minimality of predicates.

A minimal REE 𝜑 on D is a non-trivial and left-reduced REE.

Cover of rules. Consider a set Σ of minimal rules on D.
We say that Σ entails another rule 𝜑 over R denoted by Σ |= 𝜑 ,

if for any instance D of R, if D |= Σ then D |= 𝜑 .
We say that Σ is equivalent to another set Σ′ of rules, denoted

by Σ ≡ Σ′, if Σ |= 𝜑 ′ for all 𝜑 ′ ∈ Σ′ and vice versa.
We say that Σ is minimal if for all rules 𝜑 ∈ Σ, Σ . Σ \ {𝜑}, i.e.,

Σ includes no redundant rules.
Definition 3.4: A cover Σ𝑐 of Σ on D is a subset of Σ such that (a)

4

symbols notations
D, D𝑠 dataset, and samples of the dataset
𝜑 REE 𝑋 → 𝑝0

Σ, Σ𝑠 the sets of REEs discovered from D and D𝑠 , respectively
𝛼, 𝛽 bounds for precision(Σ, Σ𝑠) and recall(Σ, Σ𝑠) , respectively
𝜎, 𝛿 thresholds for support and confidence, respectively
RHS the set of candidate consequences
P0 the set of relevant predicates

Table 3: Notations

Σ𝑐 ≡ Σ, (b) all rules 𝜑 in Σ𝑐 are minimal, i.e., non-trivial and left-
reduced. (c) Σ𝑐 is minimal, i.e., Σ𝑐 contains no redundant rules [3].

Accuracy. LetD𝑠 be a sample picked fromD, and Σ𝑠 and Σ be the
set of minimal rules discovered by the same discovery algorithm on
D𝑠 and D, respectively. We quantify the effectiveness of sampling
by precision and recall. Here precision, denoted by precision(Σ, Σ𝑠),
reports the percentage of rules in Σ𝑠 that also hold onD, and recall,
denoted by recall(Σ, Σ𝑠), is defined to be the percentage of rules in
Σ that can be discovered from D𝑠 and thus, covered by Σ𝑠 .

3.2 Problem Statement
Assume that Σ𝑠 and Σ are the set of minimal rules mined by the
same discovery algorithm on D𝑠 and D, respectively. Clearly,
Σ𝑠 and Σ may contain an excessive number of rules that are
not very relevant to users’ applications and interests. To reduce
such rules, we adopt the following strategies. (1) We pick an
application-dependent set of candidate consequences 𝑝0, denoted
by RHS, which pertains to a particular application of users. (2) For
each 𝑝0 in RHS, we focus on discovering REEs 𝜑 : 𝑋 → 𝑝0 such that
𝑋 ⊆ P0 where P0 is a subset of semantically relevant predicates
related to 𝑝0. The discovery problem with sampling is as follows.
◦ Input: A database schema R, a database D of R, a consequence
set RHS, the support threshold 𝜎 , the confidence threshold 𝛿 ,
the precision threshold 𝛼 and the recall threshold 𝛽 .

◦ Output: A cover Σ𝑠 of REEs on a sample D𝑠 picked from D
such that (1) precision(Σ, Σ𝑠) ≥ 𝛼 , recall(Σ, Σ𝑠) ≥ 𝛽 , and (2) for
each REE 𝜑 : 𝑋 → 𝑝0 in Σ𝑠 , (a) 𝑝0 ∈ RHS; (b) 𝑋 ⊆ P0, where
P0 is a set of semantically relevant predicates related to 𝑝0; and
(c) 𝜑 is minimal and moreover, it is 𝜎-frequent and 𝛿-confident.
As verified by our industry collaborators, it is not very difficult

for practitioners to select a few predicates in RHS since they often
have a good understanding of their datasets and know their pain
points. They only care about key attributes and are able to pick
RHS by referencing the schema of datasets. For novice users, they
can simply start with all predicates as RHS and then narrow down
to what they need. A real-life case is deduplication in a particular
dataset; in that case users simply choose the predicate 𝑡0 .id = 𝑡1 .id
as the RHS predicate and only discover relevant ER rules.

The notations of the paper are summarized in Table 3.

4 SAMPLINGWITH ACCURACY BOUNDS
In this section, we first propose the sampling method by adapting
the random walk and breadth-first search strategies (Section 4.1).
We then establish the accuracy bounds of the method (Section 4.2).

4.1 Sampling Strategy
We start with a single-round sampling method.

Single-round sampling.We present two sampling strategies, ran-
dom walk and uniform sampling with breadth-first search (BFS).
Here the BFS strategy makes sure that rules with multiple relational
atoms can be discovered with a theoretical guarantee.
Random walk strategy. One might want to uniformly sample tuples
from D. However, some predicates (e.g., 𝑡 .𝐴 ≠ 𝑠 .𝐵) can be satisfied
by a large number of tuples and thus, have low selectivity. Hence,
uniform sampling from D might cause bias towards low selectivity
predicates while those rules with high selectivity predicates (e.g.,
equality andML predicates) are hard to be discovered. In light of this,
we transform the problem of sampling in D to sampling in a graph
𝐺 , in which high selectivity predicates are explicitly considered.

We construct a graph 𝐺 = (𝑉 , 𝐸) for D, where 𝑉 is the set of
vertices, each of which corresponds to a tuple in D, and 𝐸 is the
set of edges, such that if 𝑒 = ⟨𝑣1, 𝑣2⟩ is an edge in 𝐸, the tuple
pair corresponding to ⟨𝑣1, 𝑣2⟩ satisfies at least one equality or ML
predicate. For simplicity, we use “vertex” and “tuple” interchange-
ably. Given the maximum length len, we can adopt the random
walk algorithm [38] to sample random walks in 𝐺 with length at
most len. However, since D can be large, constructing 𝐺 could be
time-consuming. Motivated by this, we adopt an online sampling
strategy, RandomWalkSampling, to pick sample D𝑠 from D.

Specifically, we first construct position list indexes (PLI) [53],
which groups tuples by attribute values so that we can easily re-
trieve tuple pairs that satisfy a certain predicate and thus, are con-
nected by an edge in𝐺 . For ML predicates 𝑝 , we adopt the blocking
and matching algorithm of [22] to save the satisfied tuple pairs in
an auxiliary structure LML, such that ⟨𝑡, 𝑠⟩ |= 𝑝 for 𝑡 ∈ LML and
𝑠 ∈ LML [𝑡]. We then iteratively sample tuples from D via random
walk. We first draw an initial vertex 𝑡 based on uniform sampling,
such that all tuples in D are sampled with the same probability.
Then, we iteratively sample more tuples by simulating a random
walk with length at most len, starting from 𝑡 : at each step, the
random walk either terminates with probability 𝜖 , or moves to a
neighbor of the current vertex with (1 − 𝜖) probability. Here we
utilize PLI to determine the neighbors of a given vertex. All ver-
tices in the walk are included in the sample D𝑠 . The entire process
iterates until |D𝑠 | exceeds the maximum sample size.

Example 4: Consider applying our random walk method to Ta-
bles 1 and 2. Suppose that 𝑡4 is first sampled. Then 𝑡3 is the only
tuple to sample next, since it satisfies at least one predicate with
𝑡1, e.g., ⟨𝑡1, 𝑡3⟩ |= 𝑝 when 𝑝 is 𝑡 .zipcode = 𝑠 .zipcode. In con-
trast, if the conventional random walk method is adopted, it may
end up with D𝑠 = {𝑡1, 𝑡4}, on which no equality or ML predi-
cates hold; as a consequence, we cannot find useful rules such as
MBert (𝑡0 .org_name, 𝑡1 .org_name) → 𝑡0 .zipcode = 𝑡1 .zipcode.

BFS strategy. Recall that the support of a rule 𝜑 = 𝑋 → 𝑝0 is
computed as the distinct number of tuple pairs satisfying RHS
predicate 𝑝0. We first uniformly sample a tuple pair ⟨𝑡0, 𝑡1⟩ ∈ D ×
D and then adopt breadth-first search to fetch the (len − 1)-hop
neighborhood of 𝑡0 and 𝑡1, denoted as Neigh(𝑡0, 𝑡1), which includes
𝑡0 and 𝑡1. In other word, if ⟨𝑡0, 𝑡1⟩ contributes to REEs 𝜑 of len
tuple variables, BFS ensures that at least one valuation of 𝜑 is in
Neigh(𝑡0, 𝑡1). We refer to the BFS search strategy as BFSSampling.

5

Multi-round sampling. Single-round sampling suffers from the
drawback of poor recall, i.e., a rule that holds globally on D might
not be discovered from the small sampleD𝑠 . Therefore, we improve
the recall by adopting a multi-round sampling strategy.

Specifically, we run RandomWalkSampling or BFSSampling
𝑘 times, and obtain 𝑘 samples, namely D1

𝑠 , . . . ,D𝑘
𝑠 . For each

sample D𝑖
𝑠 , we mine a set Σ𝑖𝑠 of minimal REEs, and finally, we have

Σ𝑠 =
⋃𝑘

𝑖=1 Σ
𝑖
𝑠 . As will be seen, in Section 4.2, multi-round sampling

improves the recall of a fixed size sample from 78% to 89%.

4.2 Theoretical Analysis
We next prove an accuracy bounds for recall based on multi-round
sampling with the BFS strategy. Observe that we consider the recall
computed by Σ𝑠 and Σ that are discovered by the same discovery
algorithm (Section 3.1). We do not consider the precision because
the validation of rules in Σ𝑠 could be efficiently evaluated inD [22]
in parallel and invalid rules from Σ𝑠 are removed.
Assumption. We consider datasets that have a power-law degree
distribution [49], i.e., a small number of tuples have much higher
degree than the others, and a small number of tuple pairs satisfy
most REEs. By the definition of support and the BFS strategy, we
say that a tuple pair ⟨𝑡0, 𝑡1⟩ |= 𝑝0 contributes to the support of a rule
𝜑 = 𝑋 → 𝑝0 if at least one valuation of 𝜑 is in Neigh(𝑡0, 𝑡1). Thus,
we focus on deducing whether ⟨𝑡0, 𝑡1⟩ that contributes to a rule
𝜑 ∈ Σ is sampled. Similar to [16], we adopt two parameters 𝜌min
and 𝜌max to model the power-law distribution w.r.t. tuple pairs and
REEs, where 𝜌max (resp. 𝜌min) is the maximum (resp. minimum)
ratio of tuple pairs inD×D that contribute to the support of at least
𝛽 × |Σ| REEs from D. Here 𝛽 is estimated as (𝜌max

𝜌min
)−Δ [16], where

Δ is determined by estimation methods of power-law distribution.

Theorem 1: Given a sampling ratio 𝑟 , a recall bound 𝛽 , a support
bound 𝜎 , a confidence bound 𝛿 , and an error constant 𝜖 ∈ (0, 1),
multi-round sampling with the BFS strategy draws a set D𝑠 of 𝑘 =

⌈ln𝜖/ln
(
1 − exp(− 𝛽1−1/Δ (𝜎′−𝜎𝑟 2𝛽1/Δ)2

3𝜎𝑟 2)
)
⌉ with probability 1 − 𝜖 s.t.

(1) recall(Σ, Σ𝑠) ≥ 𝛽 , where Σ and Σ𝑠 are the set of minimal rules on
D and D𝑠 , respectively; and (2) such REEs in Σ𝑠 can be discovered
by setting the support bound on D𝑠 as 𝜎 ′ = ⌈𝜎𝑟2𝛽1/Δ + 1⌉.
Proof sketch. The proof has two parts, for verifying the number of
samples in D𝑠 and the support bound on D𝑠 . We assume the sam-
ples in D𝑠 have maximum size |D|𝑟 . The proof is a little involved
and is deferred to the full version due to the space constraint.
(1) Number of samples. We set 𝑋𝑖 as the percentage of rules 𝜑 in Σ

such that 𝜑 has a valuation inNeigh(𝑡 (𝑖)0 , 𝑡
(𝑖)
1), and ⟨𝑡 (𝑖)0 , 𝑡

(𝑖)
1 ⟩ is the

𝑖-th sample from D × D. Then 𝑋 =
∑ |D𝑠 |2
𝑖=1 𝑋𝑖 is the percentage of

REEs in Σ that can be mined in D𝑠 . Moreover, the expected value
E[𝑋] is bounded by |D𝑠 |2

|Σ | · 𝛽 |Σ |𝜎
𝜌max |D |2 ·𝜌min = 𝑟2𝜎𝛽1+1/Δ [16]. Using

the Chernoff bound Pr[𝑋 ≥ (1 + 𝜖𝑥)E[𝑋]] ≤ exp(−𝜖2
𝑥E[𝑋]

3) and
setting the support in D𝑠 as ⌈𝜎𝑟2𝛽1/Δ + 1⌉, we get the probability
𝑝one of the event that recall is no smaller than 𝛽 in one sample. If
we discover rules across 𝑘 samples, we have 1− (1−𝑝one)𝑘 ≥ 1−𝜖 .

Finally we have that 𝑘 = ⌈ln𝜖/ln
(
1 − exp(− 𝛽1−1/Δ (𝜎′−𝜎𝑟 2𝛽1/Δ)2

3𝜎𝑟 2)
)
⌉.

(2) Support bound. As in (1), we set the support bound on D𝑠 as
the minimal support within the error parameter 𝜖 in the sampling
domain, by using 𝜖 , sampling ratio 𝑟 and the support bound 𝜎 . 2

Confidence bound. We set the confidence bound on D𝑠 as 𝛿 ′ =

1−𝜖/4
1+𝜖/4𝛿 . Following [7], we set 𝑋 as the number of valuations satis-
fied by a rule 𝜑 , and also use the Chernoff bound. We assume the
same error constant 𝜖 . The confidence bound on D𝑠 is deduced as
the probability that the preconditions of a rule meet the minimal
support 𝜎 and the rule with the maximal support [7].

Example 5: Consider sampling from a database D of schemas
Org and Pers (Example 1) by setting len, Δ and 𝑟 as 4, 0.2 and 0.1,
respectively. To get recall(Σ, Σ𝑠) ≥ 0.9, we draw 6 samples via BFS,
with support 100, confidence 0.9 and error rate 0.1 by Theorem 1.
We can discover REEs such as 𝜑2 (see Example 1) from the samples
when the support bound and the confidence bound on D𝑠 are
⌈0.12 · 100 · 0.91/0.2 + 1⌉ = 2 and 1−0.1/4

1+0.1/4 · 0.9 = 0.86, respectively.

Remark. The bounds above differ from the prior results for sam-
pling as follows. (1) Taking sampling ratio as input, we provide the
first bound on the number of samples with a multi-round sampling
strategy, while guaranteeing recall as opposed to an error rate. (2)
The number of samples is independent of the size of the dataset D.
Apart from the given thresholds and error rate, the bound is deter-
mined by knowing only the sampling ratio and support threshold.
(3) The Chernoff bounds are extended to rules with relation atoms
across multiple tables, and the lower bound of 𝑘 is independent of
the number of multiple tuple pairs that satisfy each rule in Σ𝑠 . (4)
We establish the first connections between support/confidence on
samples D𝑠 and their counterparts on the entire dataset D.

5 PARALLEL RULE DISCOVERY
When sampling alone does not suffice to scale with big datasets,
we develop a parallel rule discovery algorithm with performance
guarantees, namely, parallel scalability. Below we first review the
parallel scalability (Section 5.1) and present a sequential discov-
ery algorithm RMiner (Section 5.2). We then show how we handle
multiple tuple variables in collective rules and how we retrieve con-
stant patterns (Section 5.3). Finally, we provide a parallel algorithm
PRMiner that is parallelly scalable relative to RMiner (Section 5.4).

We run the discovery algorithms 𝑘 times on a set {D1
𝑠 , . . . ,D𝑘

𝑠 }
of samples that are extracted from dataset D by following the
multi-round sampling strategy (Section 4); samples in D𝑠 have a
size bounded by sampling ratio 𝑟 and guarantee the bounds on
precision and recall as stated in Theorem 1, subject to error ratio 𝜖 .
For simplicity, we still use D𝑠 to denote one sample.

5.1 Parallel Scalability
We revisit the widely adopted notion of parallel scalability [36].
Assume thatA is a sequential algorithm which, given a datasetD𝑠 ,
consequences RHS, and thresholds 𝜎 and 𝛿 for support and con-
fidence, respectively, computes a cover Σ𝑐 of minimal 𝜎-frequent
and 𝛿-confident REEs on D𝑠 such that precision(Σ, Σ𝑠) ≥ 𝛼 ,
recall(Σ, Σ𝑠) ≥ 𝛽 , and the REEs are relevant to consequences RHS.
Denote its worst running time as 𝑡 (|D𝑠 |, |RHS|, 𝜎, 𝛿).

6

Definition 5.1: A parallel REE discovery algorithm A𝑝 is parallelly
scalable relative to A if its running time by using 𝑛 processors is:

𝑇 (|D𝑠 |, |RHS|, 𝜎, 𝛿,) = Õ(𝑡 (|D𝑠 |, |RHS|, 𝜎, 𝛿)
𝑛

),
where the notation Õ() hides log(𝑛) factors.

Intuitively, parallel scalability guarantees “linear” speedup ofA𝑝

relative to the yardstick algorithm A. That is, the more processors
are used, the fasterA𝑝 is. HenceA𝑝 scales well with large databases
by adding processors, and makes REE discovery feasible in practice.

5.2 Sequential Algorithm
We start with a sequential rule discovery algorithm, referred to
as RMiner, on the sample D𝑠 . As shown in Figure 1, RMiner is a
levelwise search algorithm. Given a consequence predicate 𝑝0 in
RHS and the set P0 of its correlated predicates, we maintain two
predicate sets for discovering new REEs 𝜑 : 𝑋 → 𝑝0 with 𝑋 ⊆ P0:
◦ Psel, the set of predicates selected to constitute 𝑋 ; and
◦ Pre, the set of remaining predicates in P0.
Initially, Psel is empty and Pre is P0 (line 4). RMiner then tra-

verses the search space level by level by maintaining a queue
Q (line 8), where at the 𝑖-th level, it discovers candidate REE
𝜑 : 𝑋 → 𝑝0 with |𝑋 | = 𝑖 . It iteratively moves predicates from
Pre to Psel (lines 15-16) until one of the following conditions is
satisfied: (1) Pre is exhaustive; or (2)𝜑 : Psel → 𝑝0 is a minimal REE
(𝜎-frequent and 𝛿-confident; lines 11-13), since in this case, adding
more predicates will not make supp(𝜑,D) larger, while it increases
the order of 𝜑 . If 𝜑 : Psel → 𝑝0 is still not a minimal REE, we
expand it; before expansion, anti-monotonicity is applied to check
whether we can terminate the expansion early (line 14). Finally, the
cover of discovered rules is computed and returned (line 6).

Algorithm RMiner employs two optimization strategies com-
monly used in rule discovery. (a) When multiple 𝑝0’s in RHS share
similar correlated predicates P0, it processes these 𝑝0’s together
(not shown). (b) It pre-computes auxiliary structures (line 2) such as
PLI [53], to efficiently compute supports and confidences when ver-
ifying whether the mined REEs are above the required thresholds.

5.3 Optimization Strategies
To speed up rule discovery, we propose two optimization strategies,
namely, dynamic predicate expansion and constant pattern
recovery. The former allows us to discover collective rules across
multiple tables efficiently, and the latter complements the sampling
strategy, which inevitably drops constants from the dataset.

Dynamical predicate expansion. RMiner might examine all
predicate combinations (lines 15-16), which is clearly inefficient.
To reduce the enumeration cost, we propose to employ ML models
in rule expansion so that we only focus rule discovery among
semantically correlated predicates. In the following, we first train
an ML model for capturing predicate correlation, and then show
how we embed the proposed model in rule discovery.
Learning predicate correlation. Recall that we maintain a set Psel of
selected predicates, and we iteratively add predicate 𝑝 to Psel and
check whether Psel ∪ {𝑝} → 𝑝0 is a minimal REE. Instead of trying
all possible 𝑝 , we add 𝑝 to Psel only if 𝑝 and Psel are correlated for
𝑝0. This correlation, denoted byMCorr (Psel, 𝑝, 𝑝0), is learned via
reinforcement learning (RL), and is trained based on the support

Algorithm RMiner

Input: D𝑠 , RHS, 𝜎 and 𝛿 .
Output: A cover Σ𝑠 of minimal REEs such that for each 𝜑 : 𝑋 → 𝑝0 in Σ,

(1) 𝑝0 ∈ RHS; (2) 𝑋 ⊆ P0, where P0 is a set of predicates correlated to 𝑝0.
1. Σ := ∅;
2. Build auxiliary structures, e.g., position list indexes (PLI) [53];
3. for each 𝑝0 ∈ RHS do
4. Psel := ∅; Pre := P0;
5. Σ := Expand(D𝑠 , Psel, Pre, 𝑝0, 𝛿, 𝜎, Σ) ;
6. Σ𝑠 := computeCover(Σ) ;
7. return Σ𝑠 ;

Procedure Expand
Input: D𝑠 , Psel, Pre, 𝑝0, 𝛿, 𝜎 and the current set Σ of minimal REEs.
Output: An updated set Σ of minimal REEs.
8. Q := an empty queue; Q.add(⟨Psel, Pre ⟩) ;
9. while Q ≠ ∅ do
10. ⟨Psel, Pre ⟩ := Q.pop() ; 𝜑 := Psel → 𝑝0;
11. if 𝜑 is minimal then
12. Σ := Σ ∪ {𝜑 };
13. continue; // do not further expand
14. if supp(𝜑) ≥ 𝜎 then // Anti-monotonicity
15. for each 𝑝 ∈ Pre do // Add predicates from Pre to Psel
16. Q.add(⟨Psel ∪ {𝑝 }, Pre \ {𝑝 }⟩) ;
17. return Σ;

Figure 1: Algorithm RMiner

supp(Psel ∪ {𝑝}) and confidence conf (Psel ∪ {𝑝} → 𝑝0).
Ideally, given a set Padd of predicates to be added, if supp(Psel ∪

Padd) ≥ 𝜎 and conf (Psel ∪ Padd → 𝑝0) ≥ 𝛿 , then for each 𝑝 in
Padd, MCorr (Psel, 𝑝, 𝑝0) returns true and 𝑝 is promising and can
be added to Psel; otherwiseMCorr (Psel, 𝑝, 𝑝0) returns false and we
do not consider 𝑝 for Psel. We adopt a classification model, e.g.,
feedforward neural network (FNN) for MCorr, which however, is
nontrivial to train due to the exponential cost to generate all labels.

In light of this, we adopt Deep Q-learning (DQN) [48] to generate
training instances for MCorr (Psel, 𝑝, 𝑝0); we treat the currently
selected Psel as state 𝑠 , the next predicate 𝑝 to be added as action
𝑎, and conf (Psel ∪ {𝑝} → 𝑝0) − conf (Psel → 𝑝0) as reward 𝑟

in DQN. If supp(Psel) < 𝜎 or |𝑃sel ∪ {𝑝}| exceeds the maximum
length, we set a very small negative reward, indicating that the
predicate combination is not promising. Intuitively, if Psel and 𝑝

are correlated for 𝑝0, the cumulative reward is positive, Otherwise,
it is negative. Initially, the first state, denoted by 𝑠1, is an empty Psel.
At the 𝑖-th state 𝑠𝑖 , DQN determines the next action 𝑝 to be applied,
adds 𝑝 to Psel, and transforms 𝑠𝑖 to 𝑠𝑖+1, denoted by 𝑠𝑖 →𝑝 𝑠𝑖+1.

To determine the next action (e.g., from 𝑠𝑖 to 𝑠𝑖+1), DQN utilizes
two networks: a Q-network and a target network. (1) The Q-
network is implemented as a feedforward network with two hidden
layers. It takes a state 𝑠𝑖 and an action 𝑎 as inputs, and outputs an
estimated value 𝑄̂ , as the estimated reward of taking action 𝑎. It is
learned and updated in each state, e.g., from 𝑠𝑖 to 𝑠𝑖+1. The larger
𝑄̂ is, the more likely 𝑎 is applied. (2) For the target network, its
parameters are only updated by the parameters ofQ-network in the
last state, e.g., 𝑠𝑖 . Specifically, it is obtained by cloningQ-network in
every state to generate the Q-learning targets for the next update.
The Q-network gradually learns its parameters with increasing
size of Psel. Let P𝑖

sel be a set of predicates of size 𝑖 . Given an empty
7

Algorithm LearnRL
Input: D𝑠 , P0, 𝜎, 𝛿, 𝑁 .
Output: MCorr.
1. Initialize the DQN model M, and the correlation model MCorr;
2. num := 1;
3. while num ≤ 𝑁 do
4. Sample 𝑝0 ∈ P0;
5. Train M by randomly selecting one predicate from P0 as Psel

at a time, and expanding Psel until either supp(Psel, D𝑠) < 𝜎 or
conf (Psel → 𝑝0, D𝑠) > 𝛿 (controlled by DQN);

6. Store their supports and confidence inMem;
7. num := num + 1;
8. Generate 𝑁 training instances T (Psel ∪ {𝑝 } → 𝑝0, 0/1) using M;
9. Train MCorr with T;
10. return MCorr;

Figure 2: Algorithm LearnRL

P0
sel, it is expanded with a certain number Δ𝐿 of predicates, one at

a time. After that, we obtain a sequence 𝑠seq of actions and states,
say P0

sel, 𝑝1, P1
sel, 𝑝2, . . . , PΔ𝐿−1

sel , 𝑝Δ𝐿 , PΔ𝐿
sel , and the value 𝑄∗ is:

𝑄∗ (𝑠seq, 𝑝) = E𝑠′seq∼𝜉 [𝑟 + 𝛾max𝑝′𝑄∗ (𝑠 ′seq, 𝑝 ′) |𝑠seq, 𝑝] .
where 𝜉 is the environment [48], i.e., the rule discovery function,
and𝛾 is a discount ratio. InDQN, the approximate value 𝑄̂ is learned
along with the output 𝑄∗of the target network, such that 𝑄̂ ≈ 𝑄∗.
Since Q-network takes Psel and 𝑝 as inputs, and outputs a |P0 |-
dimensional vector, we transform Psel into a |P0 |-dimensional bit
vector vps,where vps [𝑝] = 1 if 𝑝 ∈ Psel, and vps [𝑝] = 0 otherwise.
The learning method is the same as DQN, and its loss function is:
L(𝜃𝑖) = E𝑠seq,𝑎∼𝜌 (·) ;𝑠′seq∼𝜉 [(𝑟+𝛾max𝑎′𝑄̂ (𝑠 ′seq, 𝑎′;𝜃𝑖−1))−𝑄̂ (𝑠seq, 𝑎;𝜃𝑖)]
where 𝜌 (𝑠seq, 𝑎) is the behavior distribution [48], and 𝜃𝑖 denotes
parameters of Q-network in the 𝑖-th step. Different from DQN,
which simply chooses actions from a fixed action set, we select
actions, i.e., predicates that do not belong to the current state(Psel).
Hence for a given Psel, when obtaining its corresponding sequence
of actions and states, the action set is constantly shrinking. After
learning the policy fromDQN, we generate a few training instances,
e.g., for Psel ∪ {𝑝}, we use DQN to select new predicates with the
maximum Q values until it is satisfied by 𝑝0 (with label 1) or not
(with label 0). Finally we trainMCorr with these training instances.
Model pre-training. As shown in Figure 2, we pre-train MCorr on
D𝑠 using procedure LearnRL. It takes as inputs thresholds 𝜎, 𝛿 , a
set P0 of predicates, and the number 𝑁 of sequences. Here P0
is constructed on D; we use 𝑁 to strike a balance between the
accuracy of MCorr and the training time (by default, 𝑁 = 500; see
Section 6). We only pre-train the model once on each dataset.

LearnRL first initializes the DQN modelM and the correlation
modelMCorr (line 1). It then trainsM with 𝑁 sequences (lines 3–7).
For each sequence, we sample a 𝑝0 from P0 (line 3), and iteratively
expand Psel (line 5) by adding predicates from P0, until the support
of Psel is below 𝜎 or the confidence of Psel → 𝑝0 reaches 𝛿 . After
that, we generate 𝑁 training instances (line 8) and train MCorr to
predict whetherPsel∪{𝑝} → 𝑝0 is a potential rule or not (line 9). To
save time, some training instances for trainingM could be reused.
Model fine-tuning. In this stage, we re-generate𝑁 ′ (by default,𝑁 ′ =
50) training instances on D with DQN. ThenMCorr is fine-tuned
and new training instances are also reused in discovery.

After MCorr is learned, we make use of it to select predicates,
by replacing lines 14-16 of algorithm RMiner with the following:

Algorithm CRecover

Input: A template pattern 𝜑tem and the relational instances D.
Output: A set Σ of REEs recovered from 𝜑tem.
1. Recover non-constant predicates P𝑣 and 𝑝0 from 𝜑tem; P𝑐 = ∅;
2. for each 𝑝 ∈ P𝑣 do
3. for each ⟨𝑡, 𝑠 ⟩ s.t. ℎ ⟨𝑡, 𝑠 ⟩ |= 𝑝 do
4. Fill the wildcards in 𝜑tem with the constant values of 𝑡 and 𝑠 ;
5. Add the recovered constant predicates to P𝑐 ;
6. Resume rule discovery and obtain Σ = {𝜑 : 𝑋 → 𝑝0 | 𝑋 ⊆ P𝑣 ∪ P𝑐 };
7. return Σ;

Figure 3: Algorithm CRecover

14. if supp(𝜑) ≥ 𝜎 then
15. for each 𝑝 ∈ Pre do // Add predicates from Pre to Psel
16. if MCorr (Psel, 𝑝, 𝑝0) = True then
17. Q.add(⟨Psel ∪ {𝑝 }, Pre \ {𝑝 }⟩) ;

That is, we use MCorr to prune irrelevant predicates. To avoid
pruning true positives, we employ a predefined threshold 𝛾 ∈ [0, 1]
and adopt the heuristic method to prune only irrelevant predicates
inferred by MCorr with confidence no small than 𝛾 .

Example 6: For Tables 1 and 2, the set RHS collects predicates such
as 𝑝0 : 𝑡0 .org_name = 𝑡1 .org_name. After MCorr is trained, we
use it to prune meaningless predicate combinations. For instance,
MCorr (Psel, 𝑝, 𝑝0) = False for Psel = {𝑡0 .zipcode = 𝑡1 .zipcode}
and 𝑝 : 𝑡0 .oid = 𝑡1 .oid; hence Psel should not be expanded with 𝑝 .

We adoptMCorr to prune meaningless predicate combinations
during discovery. As will be seen in Section 6, MCorr substantially
reduces the search space and accelerates the discovery process by
using DQN. This allows us to discover collective rules that are
defined with multiple tuple variables and across different tables. To
further accelerate the procedure, we also use heuristic strategies
based on confidence [54] to reduce more predicate combinations.
Remark. Note that the training of predicate correlation does not
dominate the cost. The computation of predicate correlation mainly
includes the model pre-training, label regeneration, and model fine-
tuning. During label regeneration, we computes the supports of
Psel and thus, its results are saved and reused in the discovery step
(see Section 5.4). The extra overhead is pre-training and fine-tuning,
which in practice, are quite small, since pre-training is done on
samples, and the fine-tuning is bounded by |MCorr | · 𝑁 ′.

Constant pattern. As remarked earlier, sampling inevitably drops
constants from D. If we only mine REEs on D𝑠 , we might miss
some REEs that hold on D but not on D𝑠 due to the absence of
some constants from D𝑠 . To compensate the missing constants, we
propose a constant pattern recovery strategy. Instead of directly
mining constant patterns in D𝑠 , we mine template patterns in D𝑠 ,
which are constant patterns whose constant values are unassigned.
Then, we fill in the unassigned value in the template patterns with
concrete constants, to recover constant patterns in D.
Template pattern discovery in D𝑠 .We start with the notion of tem-
plate patterns, denoted by 𝜑tem : (𝑃 → 𝑄, 𝑡tem), which are defined
analogously to a pattern format REE, except that each constant in
the template pattern 𝑡tem is replaced with a wildcard ‘_’. Intuitively,
a wildcard can match an arbitrary constant. For example, for the
constant pattern at the end of Section 2, we can define a template
pattern 𝜑tem : (𝑃 → 𝑄, 𝑡tem), where 𝑃 , 𝑄 remain the same, and

𝑡tem = (⊕1 .left, ⊕2 .left, _, ⊕1 .right, ⊕2 .right, _̄,≠,M||_) .
8

Then instead of directly mining constant patterns in D𝑠 , we mine
template patterns in D𝑠 , by revising RMiner as follows. (1) Instead
of enumerating multiple constant predicates 𝑡 .𝐴 ⊕ 𝑐1, . . . , 𝑡 .𝐴 ⊕ 𝑐𝑙
for the same attribute 𝑡 .𝐴, we only identify a template predicate
𝑡 .𝐴 ⊕ _. (2) We then use template predicates to check which data
satisfies them. Given a template predicate 𝑝 : 𝑡 .𝐴 ⊕ _, a valuation ℎ
is said to satisfy 𝑝 , written as ℎ |= 𝑝 , if ℎ(𝑡).𝐴 exists, regardless of its
value; similarly for ℎ |= 𝜑tem. (3) Instead of checking the supports
and confidences in REEs verification, we say that a template pattern
𝜑tem is valid if there exists at least one valuation ℎ such that ℎ |=
𝜑tem. Only valid template patterns will be used later for constant
pattern recovery. (4) To reduce the complexity of template predicate
enumeration, we pre-process D𝑠 by mining free itemsets [19] from
it. For each itemset mined, e.g., {𝑡 .𝐴 = 𝑐1, 𝑡 .𝐵 = 𝑐2}, we construct
a corresponding template itemset, e.g., {𝑡 .𝐴 = _, 𝑡 .𝐵 = _}. Then,
instead of enumerating all combinations of template predicates, we
only enumerate template itemsets. This strategy effectively reduces
the useless constant combinations that do not exist inD𝑠 , speeding
up the template pattern discovery process.
Constant pattern recovery in D. Given 𝜑tem : (𝑃 →𝑄, 𝑡tem) discov-
ered from D𝑠 , we recover the constant patterns that hold on D, by
instantiating the wildcards in 𝜑tem with concrete constants.

To do this, a straightforward way is to retrieve all constant
values in D, fill them into 𝜑tem, and check the validity. Clearly,
this strategy is costly since most tuple pairs in D may not satisfy
non-constant predicates (e.g., 𝑡 .𝐴 ⊕ 𝑠 .𝐵) defined in 𝜑tem, and thus,
it is unnecessary to try those constants. Besides, directly filling the
wildcards might not yield minimal REEs and thus, requires us to
resume discovery for removing redundant predicates.

We propose a method, denoted as CRecover, to recover constant
patterns based on a given template pattern 𝜑tem, as shown in
Figure 3. We first recover the set of all non-constant predicates
(line 1), denoted by P𝑣 , based on 𝜑tem (see Section 2 for how to
recover predicates from pattern format REEs). Then, we find the
tuple pairs ⟨𝑡, 𝑠⟩ in D that satisfy at least one predicate in P𝑣 ,
instantiate the wildcards in 𝜑tem with the constant values of 𝑡 and
𝑠 , and obtain a set of constant predicates, denoted by P𝑐 (lines 2-5).
That is, for each 𝑡 .𝐴 ⊕ _ in 𝜑tem, we create a constant predicate
𝑡 .𝐴 ⊕ 𝑐 in P𝑐 , where 𝑐 is the 𝐴-attribute value of 𝑡 ; similarly for 𝑠 .
Finally, we resume the rule discovery process based on P𝑣 and P𝑐 ,
i.e., using RMiner, to find REEs𝜑 : 𝑋 → 𝑝0, where𝑋 ⊆ P𝑣∪P𝑐 and
𝑝0 is the RHS specified in𝜑tem (line 6). Different from complete rule
discovery, CRecover focuses discovery on the constants of 𝜑tem,
without enumerating all constants and predicate combinations.

There might be a small number of missing templates from D𝑠 .
Nonetheless, Theorem 1 ensures that our sampling method would
not miss too many cases. The more rounds are used, the less are
missed. As will be seen in Section 6, despite the missing cases, the
recall remains high, and the discovery cost is substantially reduced.

Example 7: Consider a template pattern 𝜑tem : Org(𝑡𝑎)∧Org(𝑡𝑏)∧
Pers(𝑡𝑐) ∧ MBert (𝑡𝑎 .org_name, 𝑡𝑏 .org_name) ∧ 𝑡𝑎 .oid = 𝑡𝑐 .pid ∧
𝑡𝑐 .person_address = _ → 𝑡𝑎 .zipcode = _ from Tables 1 and 2.
We first fetch valuations satisfying non-constant predicates in LHS,
denoted as (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧). Then we find out valid values of attribute, e.g.,
𝑡𝑧 .person_address = Guangzhou and 𝑡𝑥 .zipcode = 510375.

Algorithm PRMiner

Input: D𝑠 , RHS, 𝜎 , 𝛾 , Δ𝐿, and fine-tuned ML model MCorr.
Output: A cover Σ𝑠 of minimal REEs.
/* executed at coordinator 𝑆𝑐 */
1. 𝑖 := 0; Σ𝑖 := ∅;
2. for each 𝑝0 ∈ RHS do
3. Construct a work unit 𝑤 = ⟨Psel, Pre, 𝑝0 ⟩, where Psel = ∅ and Pre = P0;
4. Evenly divide RHS into 𝑛 partitions, namely RHS1, . . . ,RHS𝑛 ;
5. Assign workload W𝑗 = {𝑤 = ⟨Psel, Pre, 𝑝0 ⟩ | 𝑝0 ∈ RHS𝑗 } to worker 𝑃 𝑗 ;
6. 𝑆𝑐 distributes MCorr to 𝑛 workers;
/* Fetch data for 𝑛 workers */
7. for each worker 𝑃 𝑗 do
8. Fetch DW𝑗

= {𝑡 ∈ D | ∃𝑠 ∈ D, 𝑝 ∈ P0 s.t. ℎ ⟨𝑡, 𝑠 ⟩ |= 𝑝 or ℎ ⟨𝑡, 𝑠 ⟩ |= 𝑝0,

where 𝑝0 ∈ RHS𝑗 } and build the corresponding auxiliary structures;
/* executed at coordinator 𝑆𝑐 in levels */
9. while there exists unfinished work do /* superstep 𝑖 */

/* run on 𝑛 workers in parallel*/
10. for each 𝑃 𝑗 with non-empty workload𝑊𝑗 do
11. 𝑃 𝑗 runs RMiner from the 𝑖-th to (𝑖 + 1)-th level in parallel;
12. for each 𝑃𝑥 that has finished the assigned workload do
13. Balance workload between 𝑃 𝑗 and 𝑃𝑥 (𝑃 𝑗 is the heaviest worker);
14. Upon receiving new REEs from workers, 𝑆𝑐 updates Σ𝑖 to Σ𝑖+1;
15. 𝑖 := 𝑖 + 1;
16. Σ𝑠 := the cover of Σ𝑖 ; // computed in parallel;
17. return Σ𝑠 ;

Figure 4: Algorithm PRMiner

5.4 Parallel Algorithm
We next develop a parallel algorithm, denoted by PRMiner, for rule
discovery, and show that it is parallelly scalable relative to RMiner.

Setting. PRMiner runs with one coordinator 𝑆𝑐 and 𝑛 workers
𝑃1, . . . , 𝑃𝑛 under the Bulk Synchronous Parallel (BSP) model [68],
where the coordinator is responsible for generating and distributing
work units, and the workers parallelly discover rules in a levelwise
manner. The overall computation is divided into supersteps, where
each superstep corresponds to one level in the levelwise search.

Overview. As shown in Figure 4, PRMiner works by employing
the pre-trained ML model MCorr, as follows. The coordinator 𝑆𝑐
maintains a set Σ ofREEs (line 1). It generates a set of work units and
distributes them evenly to 𝑛 workers (see below; lines 2-5). It also
distributes MCorr to all workers (line 6). Upon receiving the work
units, each worker fetches related data from 𝑆𝑐 and builds the aux-
iliary structures (lines 7-8); then all workers perform rule discovery
in parallel by running RMiner locally (lines 9-11). At the end of each
superstep, 𝑆𝑐 collects the newly discovered rules from each worker
(line 14). Moreover, workloads are adjusted and balanced when
needed (see below; line 12-13). Finally, the cover of the set of discov-
ered rules is computed in parallel (line 16) and is returned (line 17).

Workload assignment. 𝑆𝑐 evenly partitions RHS into 𝑛 parts: RHS1,
. . . ,RHS𝑛 . Based on RHSj, 𝑆𝑐 constructs a setW𝑗 of work units for
worker 𝑃 𝑗 . Each work unit𝑤 inW𝑗 is a triple ⟨Psel,Pre, 𝑝0⟩, where
Psel is the selected predicates, Pre is the remaining predicates and
𝑝0 is a consequence in RHS𝑗 . Initially, Psel is empty and Pre is P0.
After receivingW𝑗 , each 𝑃 𝑗 fetches the data, say DW𝑗

, from D𝑠 ,
consisting of tuples and auxiliary structures that satisfy at least one
predicate in P0 or 𝑝0 (line 7); all workers then run RMiner onDW𝑗

in parallel. By doing so, tuples that satisfy multiple predicates are
9

fetched once by each worker, reducing the communication cost.

Workload balancing. At each superstep, we split the workload W𝑗

of the heaviest worker 𝑃 𝑗 and assign half of it to an idle worker 𝑃𝑥
that has finished its work, in the following two cases.
◦ If there are more than one work unit in W𝑗 , 𝑃 𝑗 sends half of
W𝑗 along with the corresponding auxiliary structures to 𝑃𝑥 .

◦ When only one heavy work unit 𝑤 = ⟨Psel,Pre, 𝑝0⟩ remains
in 𝑃 𝑗 , we partition its data DW𝑗

. Recall that RMiner expands
Psel with a new 𝑝 ∈ Pre and validates rule Psel → 𝑝0 at each
level. We reduce the validation cost since it dominates. First,
we select 𝑝 ′ ∈ Psel that has the largest support, where 𝑝 ′ is
𝑡 .𝐴 ⊕ 𝑠 .𝐵 orM(𝑡 .𝐴, 𝑠 .𝐵). Then we partition attributes 𝑡 .𝐴 and
𝑠 .𝐵 into ℎ parts, and divide the data into ℎ × ℎ partitions. We
send half of these from 𝑃 𝑗 to 𝑃𝑥 along with auxiliary structures
of Psel \ {𝑝 ′} and 𝑝0. Finally, 𝑃𝑥 computes the supports and
confidences, and sends them back to 𝑃 𝑗 ; 𝑃 𝑗 integrates the
results and returns valid rules at current superstep.

Learning predicate correlation in parallel. We also train the predi-
cate correlation model MCorr in parallel. More specifically, similar
to algorithm LearnRL (Figure 2), coordinator 𝑆𝑐 maintains 𝑁

sequences, such that 𝑁 initial Psel’s are randomly sampled and
expanded until their supports are below 𝜎 or they make valid
rules. Different from the sequential version, we distribute the
time-consuming support and confidence computation evenly to
all workers. Recall that each sequence contains a set Psel and a
newly added predicate 𝑝 . For each valid Psel in each sequence such
that Psel → 𝑝0 is a candidate rule, 𝑆𝑐 employs the currentMCorr
to pick a predicate 𝑝 with the maximum predicted reward. Then, 𝑆𝑐
distributes 𝑁 such sequences to 𝑛 workers evenly, such that the sup-
ports and confidences of Psel ∪ {𝑝} → 𝑝0 are computed in parallel.
After all workers finish their computations, they send the actual re-
wards back to 𝑆𝑐 , based onwhich 𝑆𝑐 continues to trainMCorr. When
𝑁 sequence expansions are finalized, the model MCorr is learned.

Example 8: Consider 𝑛=3 and 𝑁=3. Assume that coordinator
𝑆𝑐 randomly selects 𝑁 valid Psel’s, e.g., Psel1 = {𝑝1, 𝑝2, 𝑝6},
Psel2 = {𝑝2, 𝑝3, 𝑝4} and Psel3 = {𝑝4, 𝑝6, 𝑝7} in level 3. It examines
predicates 𝑝5, 𝑝1, and 𝑝2 separately with the maximum predicted
rewards w.r.t. Psel1 , Psel2 , and Psel3 by current MCorr. It then
distributes ⟨Psel1 , 𝑝5⟩, ⟨Psel2 , 𝑝1⟩ and ⟨Psel3 , 𝑝2⟩ to three workers to
compute support and confidence in parallel. The coordinator receives
rewards from the workers and trains MCorr incrementally. The
process iterates until 𝑁 many Psel’s have all been expanded.

Parallel constant recovery. Given a set Σtem of template patterns,
we support parallel constant recovery, denoted by PCRecover, as
follows. We divide Σtem into 𝑛 partitions, and distribute them
to workers. All workers run CRecover in parallel and output the
results. If worker 𝑃 𝑗 has a workload heavier than the others, we
handle the skewness using a balancing strategy similar to PRMiner.

Parallel cover computation. Implication checking for REEs can be
parallelized in the sameway as its counterpart forGFDs, for which a
parallelly scalable algorithm is already in place [20]. Our algorithm
for computing the cover of discovered REEs is developed along the
same lines as [20]. The algorithm retains the parallel scalability.

Parallel scalability. The parallel scalability is shown as follows.

Theorem 2: Algorithm PRMiner (resp. PCRecover) is parallelly
scalable relative to the sequential algorithmRMiner (resp.CRecover).

Proof. For PRMiner, observe that the worst-case time complexity
of RMiner is 𝑡 (|D|, |RHS|, 𝜎, 𝛿, 𝛼, 𝛽) = O(∑𝜑 ∈C(P0)×RHS |D| |𝜑 |),
where C(P0) is the power set of P0 and |𝜑 | denotes the number
of predicates in 𝜑 . In PRMiner, coordinator 𝑆𝑐 conducts workload
assignment in O(|RHS|) time. The cost at each worker is dominated
by the following: (a) fetch its corresponding data in time at most
O(|D|); (b) transmit the mined rules to the coordinator in at most
O(|D|) time; (c) balance its workload, such that at most O(|D|)
data is sent to idle workers; and (d) locally conduct discovery in
𝑡 (|D |, |RHS |,𝜎,𝛿,𝛼,𝛽)

𝑛 time, since the workload is evenly distributed
in (d). Taken together, PRMiner takes at most 𝑡 (|D |, |RHS |,𝜎,𝛿,𝛼,𝛽)

𝑛
time, and is thus parallelly scalable relative to RMiner.

In PCRecover, coordinator 𝑆𝑐 splits template patterns in
O(|Σtem |) time, which is much smaller than the cost of CRecover,
denoted by cost(CRecover). Each worker (1) balances its workload
with atmostO(|D|) communication cost; and (2) performs constant
recovery in O(𝑐𝑜𝑠𝑡 (CRecover))

𝑛 time sinceworkload is balanced. Thus,
PCRecover is parallelly scalable relative to CRecover. 2

The cost of training. The learning time of MCorr is also much

smaller than O(𝑡 (|D |, |RHS |,𝜎,𝛿,𝛼,𝛽)
𝑛) time. Indeed,MCorr is imple-

mented with DQN of two hidden layers. Denote the dimension of
each layer as ℎ; then |MCorr | is in O(ℎ(ℎ + |P0 |)). In practice, ℎ
is relatively small, e.g., ℎ ≤ 103 [48]. As the number of epoch (i.e.,
iteration) to trainMCorr is a constant value, the learning time of
MCorr is bounded by O(𝑁ℎ(ℎ + |P0 |)). Moreover, the most time-
consuming computation of supports and confidences is conducted
in parallel. As will be seen in Section 6, the cost is relatively small.

6 EXPERIMENTAL STUDY
We experimentally evaluated (1) the efficiency and accuracy of
the proposed sampling strategy, constant pattern recovery and
correlated predicate learning, (2) the scalability of PRMiner, and (3)
the effectiveness of REE discovery in real-life and synthetic datasets.

Experimental setting.We start with the experimental setting.
Datasets. We used seven datasets, including six real-life datasets
and a synthetic one (Table 4). Airport, Hospital, Inspection and
NCVoter are commonly used in the existing studies [44, 53]. DBLP
is an academic dataset with multiple relations. Realty is a property
dataset with 12 relations. We also used a synthetic dataset Tax,
modified from the tax data (1M) [6, 12], by duplicating each original
tuple 10 times and modifying the attributes using a program of [18].
ML models. REEs use three ML models as predicates: ditto [43] for
ER, and Bert [55] and edit distance (ED) for a few textual attributes.
For predicate correlation modelMCorr, we use 2 hidden layers and
set their dimension to 200. We used Adam optimizer with a batch-
size of 64; the learning rate is 0.0001. We trained our model with
300 epochs on all datasets. By default, 𝑁 = 500, 𝑁 ′ = 50, and the
inference ofMCorr is re-implemented by EJML library [1].
Baselines. We implemented the following, all in Java: (1) PRMiner,

10

including RandomWalkSampling and PCRecover; (2-5) four vari-
ants of PRMiner: PRMinerRS that replaces RandomWalkSampling
with the standard random sampling; PRMinerfull to discover REEs
directly from D; PRMinernoml without using dynamic predicate
expansion; and PRMinernoCR without constant pattern recovery;
(6) DCfinder [53], a state-of-the-art algorithm that mines all bi-
variable DCs that hold on the dataset; we tested DCfinder due
to its superiority over other DC discovery methods, as shown
in [53]; we parallelize DCfinder for a fair comparison; and (7)
REEFinder, a revision of DCfinder to mine bi-variable REEs in
parallel by extending the primitives in [59] and adding new
primitives to support constant and ML predicates; REEFinder has
the same discovery procedure as DCfinder, except its use of the
new/extended primitives for constant and ML predicates.

We compared with the four variants of PRMiner to test the
effectiveness of random walk, dynamic predicate expansion and
constant pattern recovery, respectively, and with DCfinder for
efficiency although DCfinder only mines bi-variable DCs, which
are a special case of REEs. For large datasets, e.g., DBLP, NCVoter
and Tax, we included 4 predicates in RHS, which is typical in an
application. For all algorithms, we extract constants (frequency
≥ 20%) from all non-categorical attributes as constant predicates,
and only consider equality and ML predicates for simplicity.

We conducted experiments on a cluster of up to 21 virtual
machines (one for the coordinator), each powered by 64 GB RAM
and 18 processors with 3.10 GHz. We ran the experiments 3
times, and report the average here. We do not include the time
of loading datasets, pre-computing results of ML predicates and
constructing auxiliary structure, i.e., PLI for all algorithms. Unless
stated explicitly, we set 𝜎 = 10−4 |D𝑠 |2, 𝛿 = 0.9, 𝛼 = 0.8, 𝛽 = 0.9,
and 𝑟 = 0.1. We deduce the number 𝑘 of samples and thresholds
for support and confidence on samples following Theorem 1.

Experimental results.We next report our findings.

Exp-1: Sampling. We first evaluated the usefulness of the sampling
strategy, by running PRMiner and its four variants on the entire
dataset and on samples D𝑆 . We report the accuracy (precision
and recall) of our sampling strategy. We also tested the efficiency
of (1) the support threshold 𝜎 , (2) the confidence threshold 𝛿 , (3)
the precision threshold 𝛼 , (4) the recall threshold 𝛽 , and (5) the
number 𝑘 of samples. The exact values of recall are computed in our
experiments by also discovering the set Σ of REEs from the entire
datasets in parallel. We found that recall of RandomWalkSampling
is 5% higher than BFSSampling on average. Thus for the lack of
space, we only show the results of RandomWalkSampling on some
of the datasets; the results on the other datasets are consistent.
Accuracy. Varying sampling ratio 𝑟 from 0.1 to 0.4 (Figures 5(a) and
5(b)) and the number 𝑘 of samples from 1 to 8 (Figures 5(c), 5(d)
and 5(e)), we first tested the accuracy of the methods on Airports
and Inspection. We find the following. (a) On average, PRMiner
has precision 90% and recall 81%, when 𝑟 = 0.1 and 𝑘 = 3 on
Inspection and Airport. (b) Constant pattern recovery improves the
recall by 2% on Airport, as indicated by PRMiner vs. PRMinernoCR.
This justifies the need for PCRecover. (c) The use of MCorr speeds
up rule discovery (see below) without much reduction in accuracy.
The precision and recall of PRMiner are only 1% and 5% lower

Name Type #tuples #attributes #relations
Airport [44, 53] real-life 55,113 18 1

Hospital [6, 12, 44, 53] real-life 114,919 15 1
Inspection [44, 53, 56] real-life 220,940 17 1

NCVoter [44, 53] real-life 1,681,617 12 1
DBLP [65] real-life 1,799,559 18 3
Realty real-life 642,257 110 12

Tax [6, 12, 18, 44, 53] synthetic 10,000,000 15 1

Table 4: Dataset statistic

than those of PRMinernoml when 𝑟 = 0.2 and 𝑘 = 2, respectively.
(d) On average PRMiner outperforms PRMinerRS in precision and
recall by 2.3% and 7%, respectively; this justifies the effectiveness of
RandomWalkSampling. (e) When 𝑟 increases, both precision and
recall improve, as expected, sinceD𝑠 retains more data ofD. (f) The
recall also improves with larger 𝑘 for the same reasons. However,
the precision might fluctuate slightly with larger 𝑘 (note that the
𝑦-axis of Figure 5(d) has increment 0.05). This is because there are
more rules pertaining to D𝑠 but not to D. This said, the overall
accuracy (precision and accuracy) is improved when 𝑘 gets larger.
Varying 𝑘 . We varied 𝑘 from 1 to 8. As shown in Figure 5(e) over
multi-table Realty, recall of PRMiner increases when 𝑘 gets larger,
e.g.,0.83 when 𝑘 = 7. As shown in Figure 5(f) over synthetic data,
(a) as 𝑘 increases, the discovery time of PRMiner also increases
linearly, as expected. (b) PRMinerwith the multi-round sampling is
still faster than the discovery in the entire dataset, e.g., when 𝑘 is as
large as 8. This indicates that multi-round sampling supports large
value of 𝑘 and is able to achieve both effectiveness and efficiency.
Varying 𝜎 . We then tested PRMiner by varying the support thresh-
old 𝜎 from 10−5 |D𝑠 |2 to 10−1 |D𝑠 |2. As shown in Figure 5(g) on
Hospital, (a) it takes PRMiner much less time to run on the sample
D𝑠 than on the entire dataset D, e.g., PRMiner takes 25s on D𝑠 , as
opposed to 228s by PRMinerfull on D (𝜎 = 10−4 |D𝑠 |2). In general,
PRMiner is much faster than PRMinerfull, e.g., 9.3 times faster when
𝜎 = 0.01|D𝑠 |2. This verifies sampling effectively speeds up the
discovery process. (b) When 𝜎 is smaller, it takes PRMiner longer
since it needs to examine more candidates, e.g., PRMiner is 4.1 times
faster when 𝜎 varies from 10−5 |D𝑠 | to 10−1 |D𝑠 |. (c) PRMinernoCR
is faster than PRMiner since it does not recover constant patterns,
with the price of lower accuracy as shown above. PRMinernoml is
slower than PRMiner since it does not use MCorr to prune. The ef-
fectiveness ofMCorr is more evident on larger datasets (see Exp-2).
Varying 𝛿 . Varying confidence 𝛿 from 0.8 to 0.95, we report the
results in Figure 5(h) on Inspection. As shown there, PRMiner
becomes slightly faster given a smaller 𝛿 , e.g., PRMiner is 1.28
times faster when 𝛿 = 0.8 than when 𝛿 = 0.95. This is because with
larger 𝛿 , more minimal REEs have to be checked; hence longer time.
Also from Figure 5(h), sampling substantially reduces the runtime.
Varying 𝛽 .We varied the recall threshold 𝛽 from 0.6 to 1.0. A higher
recall comes with the price of a longer execution time. Nevertheless,
our sampling method shows convincing reduction on the sample
size and the execution time, e.g.,when 𝛽 = 0.6, it only takes PRMiner
28s on D𝑠 , as opposed to 282s by PRMinerfull on D.

Exp-2: Scalability We next studied the scalability of PRMiner on
(large) entire dataset D, by varying (1) the number 𝑛 of machines,

11

PRMiner PRMinerRS PRMinernoCR PRMinernoml DCFinder PRMinerfull REEFinder

0.1 0.2 0.3 0.4

0.70

0.75

0.80

0.85

R
ec

al
l

(a) Airport: Varying 𝑟 (accuracy)

0.1 0.2 0.3 0.4
0.90

0.91

0.92

0.93

0.94

P
re

ci
si

on

(b) Inspection: Varying 𝑟 (accuracy)

1 2 3 4 5 6 7 8
0.60

0.65

0.70

0.75

0.80

0.85

R
ec

al
l

(c) Airport: Varying 𝑘 (accuracy)

1 2 3 4 5 6 7 8

0.88

0.89

0.90

0.91

0.92

P
re

ci
si

on

(d) Inspection: Varying 𝑘 (accuracy)

1 2 3 4 5 6 7 8

0.70

0.75

0.80

0.85

R
ec

al
l

(e) Realty: Varying 𝑘 (accuracy)

1 2 3 4 5 6 7 8

103

104

R
un

ni
ng

T
im

e
(s

)

(f) Synthetic: Varying 𝑘 (time)

10−5 10−4 10−3 10−2 10−1

101

102

R
un

ni
ng

T
im

e
(s

)

(g) Hospital: Varying 𝜎 (time)

0.80 0.85 0.90 0.95
101

102

R
un

ni
ng

T
im

e
(s

)

(h) Inspection: Varying 𝛿 (time)

0.60 0.70 0.80 0.90 1.00

102

R
un

ni
ng

T
im

e
(s

)

(i) NCVoter: Varying 𝛽 (time)

4 8 12 16 20

103

104

R
un

ni
ng

T
im

e
(s

)

(j) NCVoter: Varying 𝑛 (time)

4 8 12 16 20
103

104

R
un

ni
ng

Ti
m

e
(s

)

(k) DBLP: Varying 𝑛 (time)

10−5 10−4 10−3 10−2 10−1

102

103

R
un

ni
ng

T
im

e
(s

)

(l) (NCVoter): Varying 𝜎 (time)

10−5 10−4 10−3 10−2 10−1

102

103

104

R
un

ni
ng

T
im

e
(s

)

(m) Realty: Varying 𝜎 (time)

10−5 10−4 10−3 10−2 10−1

103R
un

ni
ng

T
im

e
(s

)

(n) DBLP: Varying 𝜎 (time)

0.80 0.85 0.90 0.95
102

103

104

R
un

ni
ng

Ti
m

e
(s

)

(o) NCVoter: Varying 𝛿 (time)

0.80 0.85 0.90 0.95
103

104

105

R
un

ni
ng

Ti
m

e
(s

)

(p) Realty: Varying 𝛿 (time)

20% 40% 60% 80% 100%

103

104

R
un

ni
ng

T
im

e
(s

)

(q) Synthetic: Varying D𝑠 (time)

4 8 12 16 20

104

105

R
un

ni
ng

Ti
m

e
(s

)

(r) Synthetic: Varying 𝑛 (time)

10 30 50 70 90

101

102

R
un

ni
ng

Ti
m

e
(s

)

Discovery Label Fine-tune

(s) Inspection: Varying 𝑁

NCVoter DBLP Realty Tax Inspection
0

50

100

150

200

250

R
un

ni
ng

T
im

e
(s

)

(t) Varying datasets (time)

Figure 5: Performance evaluation

(2) the support threshold 𝜎 , (3) the confidence threshold 𝛿 , and (4)
the size of synthetic data. Unless stated explicitly, we set 𝑛 = 20,
𝜎 = 10−4 |D|2, 𝛿 = 0.9 by default. The results when varying 𝛽 are
consistent with their counterparts in Exp-1 and hence not shown.
Varying 𝑛.Wefirst varied the number𝑛 of machines from 4 to 20. As
shown in Figures 5(j) and 5(k) on NCVoter and DBLP, respectively,
(a) PRMiner scales well with the increase of machines: it is 3.11
times faster when 𝑛 varies from 4 to 20. (b) PRMiner is feasible in
practice. It takes 286s onNCVoterwhen 𝑛 = 20, as opposed to 6292s
by DCfinder and 8470s by REEFinder. This is because PRMiner
utilizes 𝜎 for early termination, while the other two compute

the evidence set as one part of the discovery methods, which is
independent of 𝜎 and 𝛿 , and dominates their rule-discovery costs. (c)
REEFinder is slower than DCfinder since it mines bi-variable REEs
with constants and ML predicates, beyond bi-variable DCs targeted
by DCfinder. (d) PRMiner is 3.63 times faster than PRMinernoml on
average, up to 4.88 times. This verifies that our dynamic predicate
expansion effectively reduces the execution time.
Varying 𝜎 . Varying the support threshold 𝜎 from 10−5 |D|2

to 10−1 |D|2, we report the results in Figures 5(l), 5(n) and
5(m) on NCVoter, DBLP and Realty, respectively. PRMiner and
PRMinernoml take longer when 𝜎 is smaller, as expected, which is

12

consistent with the results in Figure 5(g); DCfinder and REEFinder
are not very sensitive to 𝜎 as explained above. This said, PRMiner
is faster than PRMinernoml, REEFinder and DCfinder under all
values of 𝜎 , e.g., PRMiner is 2.97, 27.19 and 19.38 times faster than
them on NCVoter on average, respectively, when 𝜎 = 10−5 |D|2. It
also performs the best over Realty, e.g., 35.89 and 50.44 times faster
than DCfinder and REEFinder, respectively; this verifies that our
discovery algorithm is robust on datasets with multiple relational
tables. In particular, the runtime of PRMiner increases more
slightly than PRMinernoml when 𝜎 decreases, since it checks much
less REEs than PRMinernoml due to its optimization strategies.
Varying 𝛿 .We varied the confidence threshold 𝛿 from 0.8 to 0.95. As
shown in Figures 5(o) and 5(p), PRMiner is slightly faster in most
cases when 𝛿 decreases, while the others are not very sensitive.
Nonetheless, PRMiner consistently beats all its competitors, e.g., it
is on average 1.59 and 22.09 (resp. 3.32 and 21.98) times faster than
PRMinernoml andDCfinder onRealty (resp.NCVoter), respectively.
Again this verifies that PRMiner performs well over multiple tables.

Using large Tax synthetic data (15 attributes and 10M tuples),
we tested the impact of the size |D| and the number 𝑛 of machines.
Varying |D| (synthetic). Varying the scaling factor of D from 20%
to 100%, i.e., we changed the tuples per relation from 2 million to
10 million, we computed the corresponding sample D𝑠 on each D.
As shown in Figure 5(q), all algorithms take longer, as expected.
However, PRMiner still outperforms PRMinernoml, REEFinder and
DCfinder. It takes 308s when D has 2M tuples, as opposed to 610s,
1059s and 912s by the other three, respectively.
Varying 𝑛 (synthetic). Fixing the data size |D| as 10M, we varied
the number 𝑛 of machines from 4 to 20. The results are reported in
Figure 5(r) and are consistent with those in Figures 5(j) and 5(k).
PRMiner is 3.38 times faster when 𝑛 varies from 4 to 20.
Fine-tuning cost. Varying 𝑁 from 10 to 90, we report the fine-tuning
cost in Figure 5(s), which has two parts, i.e., the cost of re-generating
labels (i.e., computing supports and confidences) of 𝑁 sequences
in D, and the cost of fine-tuning MCorr. As shown there, (1) the
fine-tuning cost increases as 𝑁 increases, while the overall time is
relatively stable. (2) The training is fast, e.g., 2.69s when 𝑁 = 90. (3)
The fine-tuning cost is much smaller than the discovery time.
Pre-training cost. We evaluated the pre-training cost among five
large datasets in Figure 5(t). The pre-training cost does not dominate
the discovery procedure, e.g., the longest time is 256s on NCVoter.
Considering the speedup of PMiner against PRMinernoml, the pre-
training step is very useful for accelerating the discovery.

Exp-3: Effectiveness. We manually examined REEs discovered by
PRMiner from samples of DBLP and Airport. Below are examples.
(1) 𝜓1: PaperDBLP (𝑡0) ∧ PaperDBLP (𝑡1) ∧ MED (𝑡0 .title, 𝑡1 .title) ∧
MBert (𝑡0 .venue, 𝑡1 .venue) ∧ 𝑡0 .year = 𝑡1 .year → 𝑡0 .id = 𝑡1 .id. This
REE is an ER rule. It says that if two papers have similar titles and
similar venues, and if they were published in the same year, then
the two denote the same paper. It employs ML models, e.g., Bert, to
check the semantic similarity of titles and venues, which are not
supported by prior data quality rules such as CFDs and DCs.
(2) 𝜓2: AuthorDBLP (𝑡0) ∧ AuthorDBLP (𝑡1) ∧ 𝑡0 .affiliation =

𝑡1 .affiliation ∧MBert (t0 .name, t1 .name) → Mditto (𝑡0 .𝐴, 𝑡1 .𝐴),
where 𝐴 is the set of all attributes in relation Author of DBLP.
It says that for two authors, it is because their names are similar
and their affiliations are the same that the ML model predicts the
two to match. It makes an attempt to explain the predication of a
black box ML modelMditto in terms of logic characteristics.
(3) 𝜓3: Airport(𝑡0) ∧ Airport(𝑡1) ∧ Airport(𝑡2) ∧ 𝑡0 .continent =

𝑡2 .continent ∧ 𝑡0 .latitude_deg = 𝑡1 .latitude_deg ∧ 𝑡0 .iso_region =

𝑡2 .iso_region∧𝑡0 .latitude_deg = 𝑡2 .latitude_deg ∧ 𝑡0 .municipality
= 𝑡1municipality → 𝑡1 .ios_region = 𝑡2 .iso_region. This rule
involves three tuple variables. It indicates that if two tuples both
share a few attributes with the third one, they may have the same
ios_region value. In detail, for three airports 𝑡0, 𝑡1, 𝑡2, if 𝑡0 and 𝑡2
have the same iso_region, continent and latitude_deg, and if 𝑡0
and 𝑡1 have the same municipality and latitude_deg, then 𝑡1 and
𝑡2 have the same iso_region. It shows that PRMiner is able to
discover rules with multiple tuple variables from sample D𝑆 . No
prior algorithms discover rules with more than two tuple variables.
(4)𝜓4:Airport(𝑡0)∧Airport(𝑡1)∧𝑡0 .iso_country≠𝑡1 .iso_country →
𝑡0 .municipality ≠ 𝑡1 .municipality. It says that two airports have
different municipalities if their countries are different. It shows that
PRMiner is able to find rules that distinguish entities/attributes.
Such rules are needed for, e.g., catching mismatched entities.

Summary. We find the following. (1) When 𝑟 = 0.1 and 𝑘 = 2,
PRMiner on samples is 12.2 times faster than PRMinerfull on the
entire datasets, on average over all the datasets tested. In particular,
over DBLP that has 3 relations, 18 attributes and 1.8M tuples,
PRMiner with sampling takes 406s, as opposed to 2960s and 3148s
by PRMinerfull and DCfinder, respectively, when 𝑛 = 20. (2) With
the sample ratio 10%, the precision and recall of PRMiner are 90%
and 82% (up to 93% and 85%), respectively, which are 2% and 7%
higher than random sampling. (3) PRMiner is parallelly scalable:
it is 3.38 times faster when the number 𝑛 of machines varies
from 4 to 20. (4) The proposed optimization methods are effective.
Employing dynamic predicate expansion, PRMiner is 2.52 times
faster than PRMinernoml on average, up to 4.77 times. Constant
recovery improves the recall of PRMinernoCR by 2%. (5) PRMiner
is capable of finding useful REEs from real-life data.

7 CONCLUSION
We have studied parallel rule discovery with sampling. The novelty
of this work consists of the following: (1) a multi-round sampling
strategy with accuracy guarantees; (2) a rule discovery algorithm
with the parallel scalability; (3) an ML-based predicate expansion
strategy to efficiently discover collective rules withmultiple relation
atoms; and (4) a method to efficiently retrieve constant patterns.
Our experimental study has verified that the method is promising.

One topic for future work is to tighten the accuracy bounds
of sampling. Another topic is to integrate data repairing and rule
discovery, to enrich each other and reduce the impact of noise.

ACKNOWLEDGMENTS
This work was supported by ERC 652976, Royal SocietyWolfson Re-
search Merit Award WRM/R1/180014, NSFC 61902274 and Longhua
Science and Technology Innovation Bureau LHKJCXJCYJ202003.

13

REFERENCES
[1] [n.d.]. http://ejml.org/wiki/index.php?title=Main_Page
[2] Ziawasch Abedjan, Patrick Schulze, and Felix Naumann. 2014. DFD: Efficient

functional dependency discovery. In CIKM. 949–958.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.
[4] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query

Answers in Inconsistent Databases. In PODS.
[5] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in

relational data. TKDD (2007).
[6] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial

Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323.
[7] Venkatesan T. Chakaravarthy, Vinayaka Pandit, and Yogish Sabharwal. 2009.

Analysis of sampling techniques for association rule mining. In ICDT. 276–283.
[8] B. Chandra and Shalini Bhaskar. 2011. A new approach for generating efficient

sample from market basket data. Expert Syst. Appl. 38, 3 (2011), 1321–1325.
[9] Bin Chen, Peter J. Haas, and Peter Scheuermann. 2002. A new two-phase sampling

based algorithm for discovering association rules. In SIGKDD.
[10] Chyouhwa Chen, Shi-Jinn Horng, and Chin-Pin Huang. 2011. Locality sensitive

hashing for sampling-based algorithms in association rule mining. Expert Syst.
Appl. 38, 10 (2011), 12388–12397.

[11] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-End Entity Resolution for
Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1–127:42.

[12] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB (2013).

[13] Kun-Ta Chuang, Ming-Syan Chen, and Wen-Chieh Yang. 2005. Progressive
Sampling for Association Rules Based on Sampling Error Estimation. In PAKDD.

[14] E. F. Codd. 1972. Relational Completeness of Data Base Sublanguages. Database
Systems: 65-98, Prentice Hall and IBM Research Report RJ 987 (1972).

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[16] Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ling Lu, and Chao Tian. 2022. Discovering
Association Rules from Big Graphs. In VLDB.

[17] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic
constraints for record matching. VLDB J. 20, 4 (2011), 495–520.

[18] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008.
Conditional functional dependencies for capturing data inconsistencies. TODS
33, 2 (2008), 6:1–6:48.

[19] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering
conditional functional dependencies. TKDE 23, 5 (2011), 683–698.

[20] Wenfei Fan, Xueli Liu, and Yingjie Cao. 2018. Parallel Reasoning of Graph
Functional Dependencies. In ICDE. 593–604.

[21] Wenfei Fan, Ping Lu, and Chao Tian. 2020. Unifying Logic Rules and Machine
Learning for Entity Enhancing. Science China Information Sciences (2020).

[22] Wenfei Fan, Chao Tian, Yanghao Wang, and Qiang Yin. 2021. Discrepancy
Detection and Incremental Detection. PVLDB (2021).

[23] Peter A Flach and Iztok Savnik. 1999. Database dependency discovery: A machine
learning approach. AI communications 12, 3 (1999), 139–160.

[24] Eve Garnaud, Nicolas Hanusse, Sofian Maabout, and Noël Novelli. 2014. Parallel
mining of dependencies. In HPCS. IEEE, 491–498.

[25] Chang Ge, Ihab F. Ilyas, and Florian Kerschbaum. 2019. Secure Multi-Party
Functional Dependency Discovery. PVLDB 13, 2 (2019), 184–196.

[26] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. 2008.
On generating near-optimal tableaux for conditional functional dependencies.
VLDB (2008).

[27] Han He. 2020. HanLP: Han Language Processing. https://github.com/hankcs/
HanLP

[28] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas. 2019.
HoloDetect: Few-Shot Learning for Error Detection. In SIGMOD.

[29] Xuegang Hu and Haitao Yu. 2006. The Research of Sampling for Mining Frequent
Itemsets. In Rough Sets and Knowledge Technology (RSKT).

[30] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An Efficient Algorithm for Discovering Functional and Approximate Dependen-
cies. Comput. J. (1999).

[31] Wontae Hwang and Dongseung Kim. 2006. Improved Association Rule Mining
by Modified Trimming. In Computer and Information Technology (CIT).

[32] Caiyan Jia and Ruqian Lu. 2005. Sampling Ensembles for Frequent Patterns. In
Fuzzy Systems and Knowledge Discovery (FSKD).

[33] Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity
resolution approaches on real-world match problems. PVLDB 3, 1-2 (2010), 484–
493.

[34] loannis Koumarelas, Thorsten Papenbrock, and Felix Naumann. 2020. MDedup:
Duplicate detection with matching dependencies. PVLDB 13, 5 (2020), 712–725.

[35] Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate
dependencies. VLDB (2018).

[36] Clyde P Kruskal, Larry Rudolph, and Marc Snir. 1990. A complexity theory of

efficient parallel algorithms. TCS (1990).
[37] Bing Li, Yukai Miao, Yaoshu Wang, Yifang Sun, and Wei Wang. 2021. Improving

the Efficiency and Effectiveness for BERT-based Entity Resolution. In AAAI.
AAAI Press, 13226–13233.

[38] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2019. Wander Join and XDB: Online
Aggregation via Random Walks. TODS 44, 1 (2019), 2:1–2:41.

[39] Weibang Li, Zhanhuai Li, Qun Chen, Tao Jiang, and Hailong Liu. 2015. Dis-
covering functional dependencies in vertically distributed big data. In WISE.
199–207.

[40] Weibang Li, Zhanhuai Li, Qun Chen, Tao Jiang, and Zhilei Yin. 2016. Discovering
approximate functional dependencies from distributed big data. In APWeb. 289–
301.

[41] Yanrong Li and Raj P. Gopalan. 2004. Effective Sampling for Mining Association
Rules. In Advances in Artificial Intelligence.

[42] Yanrong Li and Raj P. Gopalan. 2005. Stratified Sampling for Association Rules
Mining. In Artificial Intelligence Applications and Innovations (IFIP).

[43] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. arXiv preprint
arXiv:2004.00584 (2020).

[44] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-
imate Denial Constraints. PVLDB 13, 10 (2020), 1682–1695.

[45] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient discovery of
functional dependencies and Armstrong relations. In EDBT. Springer, 350–364.

[46] Basel A. Mahafzah, Amer F. Al-Badarneh, and Mohammed Z. Zakaria. 2009. A
new sampling technique for association rule mining. J. Inf. Sci. 35, 3 (2009),
358–376.

[47] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. 1994. Efficient Algo-
rithms for Discovering Association Rules. In Knowledge Discovery in Databases.

[48] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nat. (2015).

[49] MEJ Newman. 2005. Power laws, Pareto distributions and Zipf's law. Contempo-
rary Physics 46, 5 (sep 2005), 323–351.

[50] Noel Novelli and Rosine Cicchetti. 2001. Fun: An efficient algorithm for mining
functional and embedded dependencies. In ICDT. Springer, 189–203.

[51] Thorsten Papenbrock and Felix Naumann. 2016. AHybrid Approach to Functional
Dependency Discovery. In SIGMOD.

[52] Srinivasan Parthasarathy. 2002. Efficient Progressive Sampling for Association
Rules. In International Conference on Data Mining (ICDM). 354–361.

[53] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.
Discovery of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019),
266–278.

[54] Abdulhakim Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael
Stonebraker. 2020. Pattern functional dependencies for data cleaning. PVLDB 13,
5 (2020), 684–697.

[55] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. CoRR abs/1908.10084 (2019). arXiv:1908.10084

[56] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:
Holistic Data Repairs with Probabilistic Inference. PVLDB (2017).

[57] Matteo Riondato and Eli Upfal. 2015. Mining Frequent Itemsets through
Progressive Sampling with Rademacher Averages. In SIGKDD.

[58] Hemant Saxena, Lukasz Golab, and Ihab F Ilyas. 2019. Distributed discovery of
functional dependencies. In ICDE. IEEE, 1590–1593.

[59] Hemant Saxena, Lukasz Golab, and Ihab F Ilyas. 2019. Distributed implementa-
tions of dependency discovery algorithms. PVLDB 12, 11 (2019), 1624–1636.

[60] Philipp Schirmer, Thorsten Papenbrock, Ioannis Koumarelas, and Felix Naumann.
2020. Efficient Discovery of Matching Dependencies. TODS 45, 3 (2020), 1–33.

[61] Philipp Schirmer, Thorsten Papenbrock, Sebastian Kruse, Felix Naumann, Dennis
Hempfing, Torben Mayer, and Daniel Neuschäfer-Rube. 2019. DynFD: Functional
Dependency Discovery in Dynamic Datasets. In EDBT.

[62] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg,
Ivan Titov, and Max Welling. 2018. Modeling Relational Data with Graph
Convolutional Networks. In ESWC.

[63] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel
Madden, Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and
Nan Tang. 2017. Synthesizing Entity Matching Rules by Examples. PVLDB 11, 2
(2017), 189–202.

[64] Shaoxu Song and Lei Chen. 2009. Discovering matching dependencies. In CIKM.
[65] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008.

ArnetMiner: Extraction and Mining of Academic Social Networks. In KDD’08.
990–998.

[66] Benjamin Taskar, Ming Fai Wong, Pieter Abbeel, and Daphne Koller. 2003. Link
Prediction in Relational Data. In NIPS. 659–666.

[67] Hannu Toivonen. 1996. Sampling Large Databases for Association Rules. In VLDB.
Morgan Kaufmann, 134–145.

[68] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.

14

http://ejml.org/wiki/index.php?title=Main_Page
https://github.com/hankcs/HanLP
https://github.com/hankcs/HanLP
https://arxiv.org/abs/1908.10084

ACM 33, 8 (1990), 103–111.
[69] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. 2001. FastFDs: A

Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies
from Relation Instances - Extended Abstract. In DaWak.

[70] Ying Yan, Liang Jeff Chen, and Zheng Zhang. 2014. Error-bounded Sampling for
Analytics on Big Sparse Data. PVLDB (2014).

[71] H Yao, H Hamilton, and C Butz. 2002. Fd_mine: Discovering functional
dependencies in a database using equivalences. In IEEE ICDM. 1–15.

[72] Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020. Named Entity Recognition

as Dependency Parsing. In ACL.
[73] Chengqi Zhang, Shichao Zhang, and Geoffrey I. Webb. 2003. Identifying

Approximate Itemsets of Interest in Large Databases. Appl. Intell. 18, 1 (2003),
91–104.

[74] Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical
Perspective on Discovering Functional Dependencies in Noisy Data. In SIGMOD.
861–876.

[75] Yanchang Zhao, Chengqi Zhang, and Shichao Zhang. 2006. Efficient Frequent
Itemsets Mining by Sampling. In Advances in Intelligent (IT).

15

	Abstract
	1 Introduction
	2 Collective Rules with ML Models
	3 Rule Discovery with sampling
	3.1 Preliminary
	3.2 Problem Statement

	4 Sampling with Accuracy Bounds
	4.1 Sampling Strategy
	4.2 Theoretical Analysis

	5 Parallel Rule Discovery
	5.1 Parallel Scalability
	5.2 Sequential Algorithm
	5.3 Optimization Strategies
	5.4 Parallel Algorithm

	6 Experimental Study
	7 Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 300.51, 64.82 Width 13.14 Height 14.89 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 300.5073 64.8249 13.1417 14.894

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 15
 14
 15

 1

 HistoryList_V1
 qi2base

