
Keys as Features for Graph Entity Matching

Ting Deng1,2 Lei Hou1,2 Ziyan Han1,2
1Beijing Advanced Institution on Big Data and Brain Computing, Beihang University, Beijing, China

2SKLSDE, School of Computer Science and Engineering, Beihang University, Beijing, China
{dengting, houlei, hanzy}@act.buaa.edu.cn

Abstract—Keys for graphs aim to uniquely identify entities
represented by vertices in a graph, using the combination of
topological constraints and value equality constraints. This paper
proposes graph matching keys, referred to as GMKs, an extension
of graph keys with similarity predicates on values, supporting
approximation entity matching. We treat entity matching as a
classification problem, and propose GMKSLEM, a supervised
learning method for graph entity matching. In GMKSLEM, a
feature extraction method is provided to discover candidate
GMKs (CGMKs) to construct features for vector representation,
and then high-quality features and representations are generated
by feature selection. Moreover, GMKSLEM provides support
to explain the classification results. Using real-life data, we
experimentally verify the effectiveness of GMKSLEM, as well as
its interpretability.

I. INTRODUCTION

Keys are fundamental integrity constraints in data manage-

ment to define attributes for identifying entities. They have

also been extensively studied for XML, and recently further

defined for graphs.

Keys for graph (GKeys) [1] are designed as a combination

of topological constraints (by using graph patterns) and value

constraints to identify entities, with node identity to reflect

the recursive property in collective entity matching [2]. They

are further extended to ontological graph keys (OGKs) [3],

graph entity dependencies (GEDs) [4] and graph differential

dependencies (GDDs), by supporting ontological similarity on

labels (i.e., node types), the unified expression of functional

dependencies, and the similarity on attribute values and prop-

erties, respectively. These constraints have been applied to

entity matching [1], [3], [5] and error fixing combining data

repairing and object identification [6], on graphs, where a set

of high-quality constraints need to be designed beforehand

by domain experts or discovered automatically. Relying on

domain experts is often unrealistic, which motivates a lot of

study on automatic discovery algorithms for dependencies,

while it is also not an easy job (see [7] for a review). Automatic

discovery of keys is even harder since it needs to find both

meaningful graph patterns and value constraints [8], [9].

Moreover, for keys with attribute similarity, it is challenging

to define similarity thresholds [5].

The other line of studies on entity matching is machine

learning (ML)-based methods, which provide state-of-the-art

results for EM on web data [10]–[12]. However, one of the

problems of ML-based methods is the lack of explanation of

why two entities match.

In this paper, we aim to combine the advantages of the ML-

based and constraint-based methods for graph entity matching.

We want to develop a ML-based method to get high accuracy

on identifying entities, and provide interpretability using keys.

We propose graph matching keys (GMKs), which extend

GKeys [1], [4] with similarity predicates on attributes. A GMK

is a combination of a graph pattern as a topological constraint

and an attribute dependency with similarity predicates, sup-

porting collective entity matching using node identities. We

interpret GMKs with a single homomorphic match of pattern

in [4], instead of three isomorphic mappings in [1]. This makes

GMKs have clearer semantics than GKeys.

We present GMKSLEM, a supervised learning method for

graph entity matching, in which entity matching is modeled

as a classification problem. GMKSLEM uses GMKs to construct

features, for generating vector representation for node pairs in

a labeled dataset. High-quality features are achieved by a two-

step hybrid feature selection method, including feature ranking

and feature filtering, discarding those with low contributions

in classification. To the best of our knowledge, GMKSLEM

is a first attempt to combine supervised learning method with

graph dependencies in entity matching. By using the classifiers

generated during the process of feature filtering, we provide

an approach to explaining why two entities match using the

features that make contributions when they are identified for

the first time.

Using real-life graphs, we experimentally verify the effec-

tiveness of GMKSLEM. We also provide a study case to show

how GMKs work for explaining the matching results.

II. GRAPH MATCHING KEYS

In this section, we define the graph matching keys (GMKs).

We first review the notions of graphs and graph patterns.

Assume two sets Γ and Θ of labels and attributes, respectively.

Graphs and graph patterns. A graph G is specified as

(V,E, L, F), where V is a finite set of nodes, E ⊆ V×V is the

set of directed edges, L is a labeling function, assigning each

node v and edge e with L(v) and L(e) in Γ, respectively, and

for each node v ∈ V , F (v) is a tuple (A1 = a1, . . . , An = an)
where Ai is an attribute of v and ai is a constant, written as

v.Ai = ai, and Ai �= Aj if i �= j. In particular, each v has a

special attribute id denoting its node identity.

A graph pattern is a graph Q[x̄] = (VQ, EQ, LQ), where

VQ (resp. EQ) is a set of pattern nodes (resp. edges), LQ is

a function that assigns a label LQ(u) (resp. LQ(e)) to each

node u ∈ VQ (resp. edge e ∈ EQ), and x̄ is a list of variables,

1974

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00217

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 13,2021 at 04:10:45 UTC from IEEE Xplore. Restrictions apply.

one for each node in VQ. We allow wildcard ‘ ’ as a special

label in Q.

Pattern matching. We say that a label ι matches ι′, denoted

by ι � ι′, if either (a) ι and ι′ are in Γ and ι = ι′, or (b)

ι′ ∈ Γ and ι is ‘ ’ , i.e., wildcard matches any label in Γ.

A match of pattern Q in graph G is a homomorphism h from

Q to G such that (a) for each node u ∈ VQ, LQ(u) � L(h(u))
and (b) for each edge e = (u, u′) in Q, e′ = (h(u), h(u′)) is

an edge in G where LQ(e) � L(e′). We also denote the match

as a vector h(x̄) if it is clear from the context, consisting of

h(x) for all variables x ∈ x̄, in the same order as x̄, and refer

to Q(G) as the set of all matches of Q in G.

We use Q(u, u′, G) to denote the set of all matches of pair

(u, u′) in Q(G) for u, u′ ∈ Q, i.e., Q(u, u′, G) consists of

pairs of nodes (v, v′) in G such that there exists a match h of

Q in G under which h(u) = v and h(u′) = v′.

Graph Matching Keys. GMKs extend GKeys in [4] with

similarity predicates on attributes, which adopt the semantics

of a single homomorphic match instead of three isomorphic

mappings in [1].

Syntax. A GMK ψ is a pair Q[z̄](Xψ → x0.id = y0.id), where

(1) Q[z̄] = Q1[x̄]∪Q2[ȳ] is composed of two patterns Q1[x̄] =
(VQ1 , EQ1 , LQ1) and Q2[ȳ] = (VQ2 , EQ2 , LQ2), and Q2[ȳ] is

a copy of Q1[x̄] via a bijection f : x̄ �→ ȳ, such that (a) x̄ and

ȳ are disjoint, and (b) f is an isomorphism from Q1 to Q2, i.e.,
for each x ∈ x̄, LQ1

(x) = LQ2
(f(x)); and e = (x1, x2) is in

EQ1
, labeled with LQ1

(e) if and only if e′ = (f(x1), f(x2))
is in EQ2 , labeled with LQ2(e

′) = LQ1(e); intuitively, Q2[ȳ]
is Q1[x̄] with variables renamed by f .

(2) z̄ consists of x̄ followed by ȳ, and x0 ∈ x̄ and y0 ∈ ȳ are

designated nodes in ψ; and

(3) Xψ is a set of literals of z̄, where each literal is either

(a) an id literal x.id = y.id where y = f(x), or (b) a variable

literal x.A ≈ y.B where y = f(x) and A and B are attributes

in Θ that are not id. Here we assume that ≈ is a domain

specific similarity predicate that can be defined in terms of

any similarity metric used in entity matching, e.g., q-grams,

Jaro distance or edit distance, such that a ≈ b is true if a and b
are “close” enough with respect to a predefined threshold δ. In

particular, the equality relation = is also a similarity predicate.

Semantics. To interpret GMKs, we use the following notations.

Consider a match h(z̄) of Q in a graph G, and a literal l of

z̄. We say that h(z̄) satisfies l, if (a) when l is x.A ≈ y.B,

then attributes A and B exist at v = h(x) and v′ = h(y),
respectively, and v.A ≈ v′.B; and (b) when l is x.id = y.id,

then h(x) and h(y) refer to the same node.

We denote by h(z̄) |= Xψ if h(z̄) satisfies all the literals

in Xψ; We write h(z̄) |= Xψ → x0.id = y0.id if h(z̄) |= Xψ

implies that h(x0) and h(y0) refer to the same node in G.

A graph G satisfies GMK ψ, denoted by G |= ψ, if for all

matches h(z̄) of Q in G, h(z̄) |= Xψ → x0.id = y0.id. A

graph G satisfies a set Σ of GMKs if for all ψ ∈ Σ, G |= ψ,

i.e., G satisfies each GMK in Σ.

Fig. 1. GMKSLEM overview

III. OVERVIEW OF GMKSLEM

We treat graph entity matching as a classification problem

and present GMKSLEM, a supervised learning method for it.

As depicted in Fig. 1, given a graph G and a labeled data D
consisting of a finite number of triples (v, v′, r), where v and

v′ are nodes of G and r ∈ {0, 1}. Here r = 1 if v and v′ are

identified as the same entity and r = 0 otherwise. GMKSLEM

extracts a set Σc of GMKs, referred to as candidate GMKs

(CGMKs), to generate a feature set Fc, and then represents

each node pair in D as a vector. We denote by VectorD the

set of all such vectors. Then it performs a process of feature

selection to get a high-quality feature set F from Fc. Finally,

a classifier CEM is generated to predict if a pair of nodes refers

to the same entity.

More specifically, GMKSLEM works as follows.

(1) GMKs feature extraction. The feature extraction consists

of two steps: CGMKs discovery and vector representation.

CGMKs discovery. This procedure first finds all frequent graph

patterns Q[z̄] = Q1[x̄] ∪ Q2[ȳ] over D such that the support

supp(Q,D) in D is no less than a given threshold δ, where

supp(Q,D) =
|Q(x0, y0, G) ∩Dpair|

|Dpair| .

Here Dpair is the set of all pairs (v, v′) such that (v, v′, r) ∈ D
for some r ∈ {0, 1}. Intuitively, supp(Q,D) is the fraction of

the node pairs in D that have matches in Q(G).
More specifically, for each label a appearing in some node

in D, we initially generate a single-node pattern Q1 with a

designated node x0 labeled with a. Then Q1 is expanded with

edges, adding one edge at a time, when supp(Q,D) ≥ δ,

where Q = Q1 ∪Q2 and Q2 is a copy of Q1. We implement

the expansion by using the tree structure in [8].

For each frequent graph pattern Q[z̄] = Q1[x̄] ∪ Q2[ȳ]
with two designated nodes x0 and y0 and bijection f between

Q1[x̄] and Q2[ȳ], a CGMK ψ : Q[z̄](Xψ → x0.id = y0.id) is

constructed, where Xψ consists of all literals x.Ai ≈j f(x).Bi
and x.id = f(x).id, for every x ∈ x̄, all labels Ai and Bi
appearing in ψi, and all optional similarity functions ≈i.
Vector representation. This procedure generates a feature vec-

tor v(v,v′) for every node pair (v, v′) in Dpair, where each

feature is a pair (ψ, l) for a CGMK ψ in Σc and a literal l
in ψ. We denote by Fc the feature set consisting of all such

features. The value of (ψ, l) in v(v,v′) is set to be the con-

fidence confψ(l, v, v
′), quantifying “the greatest possibility”

1975

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 13,2021 at 04:10:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Tree TP for explaining matching results

of matches h(z̄) in Q(G) satisfying l, when h(x0) = v and

h(y0) = v′. Here Q is the pattern in ψ, and x0 and y0 are the

designated nodes in ψ. Correspondingly, confψ(l, v, v
′) = 0

when (v, v′) /∈ Q(x0, y0, G). This makes it possible to remove

useless literals by the process of feature selection.

When (v, v′) ∈ Q(x0, y0, G), we define confψ(l, v, v
′) as

the maximum of similarities s(l, v, v′, h) for all matches h of

Q in G such that h(x0) = v and h(y0) = v′, i.e.,

confψ(l, v, v
′) = max

h∈Q(G)
{s(l, v, v′, h)|h(x0, y0) = (v, v′)};

otherwise, confψ(l, v, v
′) = 0.

Here s(l, v, v′, h) is defined as follows: (a) if l is xi.Ai ≈
yi.Bi, then s(l, v, v′, h) is set to be the similarity between

h(xi).Ai and h(yi).Bi in terms of the similarity metric used

in ≈; and (b) if l is xi.id = yi.id, then s(l, v, v′, h) = 1 when

h(xi) = h(yi), i.e., h(xi) and h(yi) are the same node in

graph G, and s(l, v, v′, h) = 0 otherwise.

(2) Feature selection. Given set Fc, feature selection is to

identify the subset F ⊆ Fc of high quality features for the

classification. To do it, we use a two-step hybrid selection

method including feature ranking and feature filtering based

on an incremental wrapper selection over that ranking [13].

Feature ranking. We measure the importance of each feature

θ in Fc by using its Gini importance score, which is known

to provide a relative ranking of the features and is usually

generated by training a random forest [14]. Intuitively, the

higher Gini importance score a feature has, the more important

it is for the classification. Then all the features in Fc are sorted

in descending order on their Gini importance scores, becoming

a ranked list, denoted by LFc .

Feature filtering. This step evaluates the contribution of each

θ in LFc
, and gets a subset F of Fc after discarding those

features without contributions. It starts with F = ∅ and runs

over the ranked list LFc to add features to F , one at a time,

as follows. We train a classifier using features in F ∪{θ} and

validate their contributions using a validation set. A feature

θ is added to F if the performance of this classifier is better

than the classifier learned using F ; otherwise it is discarded.

After the feature filtering, all the reserved features constitute

the final high-quality feature set F . Meanwhile, we get a new

vector representation Vector′D for nodes pairs in D and a final

classifier CEM to predict if an arbitrary pair of nodes match.

(3) Interpretability. We provide an approach to explaining

why two entities match, by identifying the features (ψ, l)
that make contributions. Let Ci(i ∈ [1, |F|]) be the classifiers

trained by the first i features added to F during the process

TABLE I
GRAPHS CHARACTERISTICS

Dataset |V | |E| #Pos.
BeRa [11] 7,416 7,345 68
iTAm [11] 71,253 125,660 132
LaMy [15] 1.0M 8.2M 1,381
FlLa [15] 0.3M 10.8M 510

DBLP 1 6.2M 11.5M 38,731

Amazon 2 2.4M 5.3M 31,025

TABLE II
ACCURACY COMPARISONS

Graph DeepMatcher Magellan GMKSLEM
ΔF1P R F1 P R F1 P R F1

BeRa 63.2 85.7 72.7 68.4 92.9 78.8 92.9 92.9 92.9 14.1
iTAm 92.0 85.2 88.5 86.7 96.3 91.2 90.0 100.0 94.7 3.5
LaMy 86.9 73.2 79.4 83.4 80.9 82.4 88.0 89.0 88.5 6.1
FlLa 100 81.8 90.0 96.1 73.7 83.4 93.9 93.9 93.9 3.9
DBLP 85.8 87.7 86.7 87.0 86.7 86.8 85.6 92.2 88.8 2.0
Amazon 95.1 95.9 95.5 97.4 94.6 96.0 94.9 97.2 96.1 0.1

of feature filtering, and P be the set of node pairs that are to

be classified. We denote by Pi (i ∈ [1, |F|]) the set of node

pairs (v, v′) in P that are predicted to be matched by Fi.
A tree TP is built to help understand the predictions (See

Fig. 2). There are two kinds of nodes in TP : feature nodes
and match nodes, storing features in F and sets of matched

nodes in P , respectively. The root of TP is a feature node that

stores the first feature added in F , denoted by (ψ1, l1). The

right node at level i ∈ [2, |F|] is a feature node, storing the

ith feature added to F , denoted by (ψi, li), and the left node

is a match node, carrying the set P ′i of newly matched node

pairs, i.e., P ′i = Pi \
⋃
j∈[1,i−1] Pj . Obviously, P1 = P ′1.

Intuitively, P ′i consists of all node pairs in P that are

predicted matched for the first time once feature (ψi, li) is used

for training. That is, all the first i features (ψ1, l1), . . . , (ψi, li)
make contributions for predicting matched node pairs in P ′i ,
which help users understand why those node pairs match.

IV. EXPERIMENTAL STUDY

Using real-life datasets, we experimentally evaluated

GMKSLEM for the effectiveness and the interpretability.

Experimental setting. We used six real-life datasets and their

details are shown in Table I, including the numbers of nodes

(|V |), edges (|E|), and positive duplicate node pairs #Pos..
Methods compared. We compared our method with two super-

vised learning-based entity matching methods: DeepMatcher

[11] and Magellan [10]. We ran all neural network components

in DeepMatcher including SIF, RNN, Attention and Hybrid,

for five training epochs; and three ML modules i.e., kNN,

SVM and random forest (RF) for Magellan and GMKSLEM.

Implementation. We split node pairs including positive and

negative samples into three parts with the ratio of 3:1:1, for

training, validation and testing, respectively. For GMKSLEM,

we use five string similarity functions as candidates in similar-

ity predicates, including Jaro similarity (Jr), Jaccard similarity

1https://dblp.uni-trier.de/xml/
2http://snap.stanford.edu/data/amazon/

1976

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 13,2021 at 04:10:45 UTC from IEEE Xplore. Restrictions apply.

Q Q′

Fig. 3. Example of frequent graph patterns in DBLP

(Jc), edit distance (Ed), Needleman-Wunsch (NW) algorithm

and Smith-Waterman (SW) algorithm. We set the support

threshold s = 0.2 for Amazon and 0.5 for the rest datasets.

We deployed all the three methods on a Linux machine with

2.2GHz CPU and 96GB of memory. Each experiment was run

5 times and the average is reported here.

Experimental results. We next report our findings.

Effectiveness. The effectiveness is evaluated by precision (P),

recall (R) and F1 value defined as 2P · R/(P + R). Table II

shows the best P, R and F1 scores of DeepMatcher, Magellan

and GMKSLEM, as well as ΔF1, the relative increase in F1 of

GMKSLEM over the best of DeepMatcher and Magellan. We

use red font to highlight the highest F1 score.

Compared with other methods, on average GMKSLEM

achieves at least 4.95% improvements on both F1 and recall.
In detail, for BeRa and iTAm, on average, GMKSLEM out-

performs DeepMatcher and Magellan by 8.8% on F1. For

LaMy, our method outperforms other methods by at least 1.1%

and 8.1% on precision and recall, respectively. For FlLa, the

precision of GMKSLEM is lower than the others; however, its

recall is at least 12.1% higher than them. For DBLP and

Amazon, the improvements are also reflected by the higher

recall (more than 4.5% and 1.3% higher, respectively).

Interpretability. Figure 3 shows two frequent graph patterns

Q and Q′ discovered from DBLP, where Q[x0, x1, y0, y1]
consists of a pattern Q1[x0, x1] with variables x0 and x1,

specifying a relationship between an author entity x0 and a

paper entity x1, and a copy Q2[y0, y1] of Q1[x0, x1] with

variables renamed; similarly for Q′[x0, x1, x2, y0, y1, y2]. Two

CGMKs ψ,ψ′ are generated as follows:

ψ : Q[x0, x1, y0, y1](X → x0.id = y0.id),

ψ′ : Q′[x0, x1, x2, y0, y1, y2](X ′ → x0.id = y0.id),

where X and X ′ consist of all candidate literals of ψ and ψ′,
respectively (Details of X and X ′ are not given here).

The first two features added in the feature set F for DBLP
is l : x1.title ≈Jc y1.title and l′ : x2.name ≈Ed y2.name.

Figure 4 shows the first three levels of the tree TP for DBLP. It

tell us that (a) “Erhard Rahm” and “E Rahm” can be identified

as the same author because the papers they published have

similar titles by Jc metric; and (b) however, it is not enough

to identify “L Vu” and “Long Vu”, unless we consider the

similarity of their co-authors’ names evaluated by Ed.

V. CONCLUSION

We have proposed a class of GMKs with similarity pred-

icates for entity matching on graphs. We have developed a

Fig. 4. Tree TP for explaining the matching results for DBLP

supervised learning method GMKSLEM, which supports to

explain the matching results. We have presented a feature

extraction method to discover GMKs to generate features for

vector representation, and a feature selection method to discard

those features with low contributions in entity matching. We

have empirically verified the effectiveness of our method and

provided a case of interpretability.

VI. ACKNOWLEDGMENT

This work is supported in part by The National

Key Research and Development Program of China

(2016YFB1000103) and NSFC (61602023, 61421003).

REFERENCES

[1] W. Fan, Z. Fan, C. Tian, and X. L. Dong, “Keys for graphs,” PVLDB,
vol. 8, no. 12, pp. 1590–1601, Aug. 2015.

[2] I. Bhattacharya and L. Getoor, “Collective entity resolution in relational
data,” ACM TKDD, vol. 1, no. 1, 2007.

[3] H. Ma, M. Alipourlangouri, Y. Wu, F. Chiang, and J. Pi, “Ontology-
based entity matching in attributed graphs,” PVLDB, vol. 12, no. 10,
pp. 1195–1207, Jun. 2019.

[4] W. Fan and P. Lu, “Dependencies for graphs,” ACM TODS, vol. 44,
no. 2, pp. 5:1–5:40, 2019.

[5] S. Kwashie, L. Liu, J. Liu, M. Stumptner, J. Li, and L. Yang, “Certus: an
effective entity resolution approach with graph differential dependencies
(GDDs),” PVLDB, vol. 12, no. 6, pp. 653–666, 2019.

[6] W. Fan, P. Lu, C. Tian, and J. Zhou, “Deducing certain fixes to graphs,”
PVLDB, vol. 12, no. 7, pp. 752–765, 2019.

[7] J. Liu, J. Li, C. Liu, and Y. Chen, “Discover dependencies from data—a
review,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 2, pp. 251–264,
2012.

[8] W. Fan, C. Hu, X. Liu, and P. Lu, “Discovering graph functional
dependencies,” in SIGMOD, 2018, pp. 427–439.

[9] M. Alipourlangouri and F. Chiang, “Keyminer: Discovering keys for
graphs,” in VLDB workshop, 2018, pp. 1–7.

[10] P. Konda, S. Das, P. Suganthan G. C., A. Doan, A. Ardalan, J. R.
Ballard, H. Li, F. Panahi, H. Zhang, J. Naughton, S. Prasad, G. Krishnan,
R. Deep, and V. Raghavendra, “Magellan: Toward building entity
matching management systems,” PVLDB, vol. 9, no. 12, pp. 1197–1208,
2016.

[11] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep learning for entity matching: A
design space exploration,” in SIGMOD, 2018, pp. 19–34.

[12] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang,
“Distributed representations of tuples for entity resolution,” PVLDB,
vol. 11, no. 11, pp. 1454–1467, 2018.

[13] P. Bermejo, L. de la Ossa, J. A. Gámez, and J. M. Puerta, “Fast wrapper
feature subset selection in high-dimensional datasets by means of filter
re-ranking,” Knowledge-Based Systems, vol. 25, no. 1, pp. 35–44, 2012.

[14] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert,
W. Petrich, and F. A. Hamprecht, “A comparison of random forest and
its gini importance with standard chemometric methods for the fea-
ture selection and classification of spectral data,” BMC bioinformatics,
vol. 10, no. 1, p. 213, 2009.

[15] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “Cosnet: Connecting
heterogeneous social networks with local and global consistency,” in
KDD, 2015, pp. 1485–1494.

1977

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 13,2021 at 04:10:45 UTC from IEEE Xplore. Restrictions apply.

